

Ge detectors in COHERENT

Keyu Ding June 1, 2023

(COHEREN

UNIVERSITY OF SOUTH DAKOTA

Neutrino sources

Grand Unified Neutrino Spectrum at Earth

Edoardo Vitagliano, Irene Tamborra, Georg Raffelt. Oct 25, 2019. 54 pp. MPP-2019-205 e-Print: arXiv:1910.11878 [astro-ph.HE] | PDF

Neutrino interactions with matter

neutrino-nucleus scattering (CEvNS)

This is the *gentlest* interaction of a neutrino with a nucleus

Why CEvNS: high cross-section

Large cross section (by neutrino standards) but hard to observe due to tiny nuclear recoil energies:

Why Ge-mini?

Ge-mini: inverted coaxial point-contact Ge detector

- Inverted coaxial -> large mass
- point-contact -> low threshold
- Electronic noise<150 eV FWHM</p>
- Threshold -> 0.4 keVee, ~2-2.5 keVnr

Shielding structure

- > Pb and Copper (heavy nucleus) shields from gamma-rays
- Polyethylene capture neutron
- Muon veto

Data from similar shallow-depth Ge CEvNS experiments (such as CONUS) help guide Ge-mini background considerations

Ge-mini expected CEvNS events

Current status: > 10 kg worth has been deployed > The rest 8 kg will be deployed this summer

QF, no drama in this talk...

Broad Impact of π DAR CEvNS Studies

Non-Standard

BSM light mediator too...

Take away

➢CEvNS are something!

- High cross-section, require low energy threshold detectors
- >Well predicted in the standard model
- Precision measurements can be a great tool to probe physics in the standard model and beyond

COHERENT Collaboration

- ~80 members, 21 institutions
- Formed in 2013 to observe CEvNS in multiple nuclear targets to measure N²scaling of cross section
- Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) is also a perfect source of neutrinos.
- Intense flux of low-energy pulsed neutrinos also useful for studying inelastic neutrinonucleus interactions
- Intense proton pulses also useful for dark sector searches

Stopped-Pion (π DAR) Neutrinos

 ν_e

 $\mu^+ \to e^+$

3-body decay: range of energies

between 0 and $m_{\mu}/2$ DELAYED (2.2 μ s)

The only experimental signature:

> tiny energy deposited by nuclear recoils in the target material

→ WIMP dark matter detectors developed over the last ~decade are sensitive to ~ keV to 10's of keV recoils

Low-energy nuclear recoil detection strategies

Spallation Neutron Source

Oak Ridge National Laboratory, TN

JJJA

Proton beam energy: 0.9-1.3 GeV Total power: 0.9-1.4 MW Pulse duration: 380 ns FWHM Repetition rate: 60 Hz Liquid mercury target

The neutrinos are free!