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Neutrinoless Double Beta Decay - Ovf [

(A, Z) = (A, Z+2)+e +e

* Exchange of virtual light neutrinos results in no net neutrinos
from this process

* Thus, net matter production

* If this process exists, it would be extremely rare — orders of
magnitude longer than the age of the universe.




p——
ot

CEGEINU)

 LEGEND is a next generation collaborative experiment - L
searching for Ovff using high purity germanium )
detectors.

* Currently in the 200kg phase, LEGEND plans to use
~1000kg of "®Ge to search for this elusive process.

* Innovation for this high mass and low-background
experiment will allow LEGEND to achieve a discovery
potential at a half-life of 10%8years
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Background in LEGEND-1000
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* Boosted Decision Tree (BDT) Model
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backgrounds in L-1000
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Inverted Coaxial Point Contact (ICPC) Detectors

M]D (PPC) GERDA (BEGe) LEGEND (ICPC)
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Larger size of ICPCs makes many pulse shape characteristic correlations (discussed later)
more prominent




Single-Site Events

Weighting Potential and Charge Drift Generated Signal
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Multi-Site Events

Weighting Potential and Charge Drift Generated Signal
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Pipeline Goals -

Develop a Machine Learning (ML) software tool that can reject multisite events using only the raw
waveform data.

. Create a fast (real time) analysis tool for efficient detector characterization analysis.

. Explore and develop explainability tools to learn from and inform physics from the ML model.

Pipenne Ste ps = 1. Calibration and event selection

2. Pulse Shape Parameter extraction

3. Boosted Decision Tree (BDT) training and validation
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Spectrum Calibration
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Proxy Events

* To train a model to classify events as single-site (SS) or multi-site (MS) we need large
samples of each

* Of course - OvfS[ signals are not exactly at our disposal.

* Use data from the Th-228 calibration as proxy to represent the types of signals we would
expect to see.

* Double-Escape Peak (DEP) for Single-Site/0v[[(-like
* Single-Escape Peak (SEP) for Multi-Site/background-like




Single-Site Proxy Event

2614 keV

511 keV

511 keV

Double Escape
Total Collected Energy:
2614-511-511 = 1592 keV

Multi-Site Proxy Event

2614 keV

511 keV

Single Escape
Total Collected Energy:
2614-511 = 2103 keV
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Event Extraction

DEP Peak SEP Peak

Calibrated Energy Spectrum
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Pulse Shape
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What are Pulse Shape Parameters?

e Lots of information about a detection event

Example Event Waveform

can be gleamed from the shape of the event 107 RN Wavelor
waveform. \
* Many of these parameters were developed °]
for analysis of previous Ge detector
experiments, namely the MAJORANA 3
DEMONSTRATOR. 3
* PSD Extracted in this pipeline: N
e Current Amplitude c Energy (A/E)
* Delayed Charge Recovery (DCR) | J
* Late Charge (LQ80) N . .
* Drift Time 10%, 50%, 99.9% (TDRIFT) S w0 7w e  mm wo 1o 2060

Time (ns)



Pole-Zero Correction

Pole-Zero Correction Visualization

o | —— RAW Waveform
» Raw waveforms exhibit an RC 197 — Pz Corrected Waveform -
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electronic circuit used to read N
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ADC

Drift Time
SS event with average drift times MS events with high drift times SS event with high drift times
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ADC

Current Amplitude

Waveform with Denoted Drift Times
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Tail Slope — Delayed Charge Recovery

Example Waveforms with different DCR values Example Waveforms with different DCR values
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Late Charge

High LQ Event
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Parameter Correlations

* Traditional Analysis:

* Each pulse shape parameter is considered independently with little to no consideration
for multi-parameter correlation.

* Requires fine-tuning of each individual parameter (time consuming).

* Machine Learning Analysis:
* Simultaneously analyzes all parameters taking into account their correlations.

* Does not require fine-tuning of individual parameters (fast analysis, ~30 sec training
time)

* Motivates the use of a Boosted Decision Tree machine learning model which can train on
many different parameters simultaneously.



Boosted Decision Tree

Data Tree 1 FErrors Tree2 FErrors Tree 3+

Final Model
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What is a Boosted Decision Tree Model

» Supervised machine learning model -
* Machine Learning — Computer algorithms that _ .
learn from Iarge datasets to fit models to Fig: Screenshot of part of one trained tree.
observed patterns.
« Supervised = labeled. Essentially quiding the
machine to specified classifications

* Decision Tree
« Network of Boolean (T/F) decisions through

which events are classified

* Boosting -
« Growing multiple trees in a series, each fitting to

the residuals of the previous.

il Q-
. = 5 -8 @ Henry Nachman | | Hsu — 05/27 '




Distribution Matching

* The DEP and SEP datasets have different distributions of parameters which need to be
remedied to avoid unintentional bias:

1. DATASET SIZE - if the SEP (Multi-Site) has many more events than DEP, the model will
have a statistical bias towards classifying things as multi-site.

2. Need to remove ENERGY DEPENDENCE from parameters. Our datasets come from two
peaks of different energy — not a property of single-site and multi-site events.
Otherwise, model will simply train on energy and will be unrealistically good at
classifying events.

3. Encourages the model to investigate the correlations between parameters, rather than
just differences in distributions of single parameters.



How to Match Distributions

1. Bin the data from both sets (single- /LQ80 |
. . 0 EDD_
site & mUITI_SITe) . . [ Signal Before Matching
2. Keep only the data that is consistent . Background Before Matching
between both sets

1 Distribution After Matching

600
* Drastically cuts the totally number of oy
events available for training. 2
é 400
« Don’t want to match A/E parameter S
as dividing by E should remove
Energy dependence and other 2007 E
distribution differences are likely . i
signatures of multi-sitedness

. . :
=100 0 100 200 300
Parameter Value



Model Explainability - SHAP

Explain how the machine learned from the data — rather than blindly trusting the results

* SHAP — SHapley Additive exPlanations — game theory principles to assign each parameter a
value based on its influence over the model’s classification, for each event.

higher 2 lower

Single-sit -0.5 o. 0 0.5 1.0 1.5 2. (3 a0 2.5 Multi-sit
Ingie-site uiTI-siTte
__

R R
P o @ Q~\é & o
v 60‘*\@ ¢ « & <\°Q§J
hlgher - Iower
u 35 se value ) .
1.0 0.8 0.6 —0.5 0.2 €.0 0.2 0.4 0.6 Multi-site




External Dependencies

My pipeline makes use of external software frameworks including:

* PYGAMA - for peak fitting
* Developed by LEGEND collaboration

* LightGBM — for model training
* Guolin Ke et al.

* SHAP — for Shapley explainability study
e Scott Lundberg, Su-In Lee

b /A\\A % @ Henry Nachman
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BDT Distribution

BDT Distribution - mix data

Mix Data Pre- Post- _ 1 Signal

Matching | Matching > 1 sideband Sgnal
SEP (Multi-Site) | 35420 | 3899 - vieband Backgroune
DEP (Single-Site) 14730 3899

N
u
o

Trees 47

* Model validated on 30% of training
data.

# of events / 0.01 BDT Output(a.u.)
S
o

150
100
50
0 ;
0.0 0.2 0.4 0.6 0.8 1.0
BDT output



ROC — mix data

« Measure of binary classifier —
Perfect classifier has an AUC =1

ROC performance - mix data

1.0

o
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o
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 Note: the A/E measure shown
here is without drift time

True Positivity Rate

correction or other methods used | . I
. o e . 0.21 1 / ! .
in the traditional LEGEND analysis v | Classifier  DEP ~ SEP  AUC
I' i - A/E 90.0% 45.3% 0.54
,l i — BDT 90.0% 36.4% 0.7
! --- BDT SideSub 90.0% 26.7% 0.75
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SHAP Feature Importance - Mix

Made by plotting Shapely BDT SHAP Feature Importance (mix) B
values for every event. 0.450
Color of point represents '
) . /A DAQE -
the ultimate classification. 10.425
/TDRIFT50 '
“Important” features have [ ] 0.400
a dumbbell shape /DCR 0.375
Notice the anti-correlation /TDRIFT 0.350
between /LQ80 0.325
 TDRIFT50:A_DAQE
« DCR:A_DAQE /TDRIFT10 0.300
0.275

-3 —2 -1 0 1 2
SHAP value (impact on model output)
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Discussion and Conclusion

* BDT does outperform (raw) A/E discriminator — but likely does not rival fully-tuned A/E in
traditional analysis

* Fast analysis tool — Whole pipeline can be run in a matter of minutes from raw data to
trained BDT model.

 Particularly important as LEGEND ramps up in detector characterization with ~250
detectors to be analyzed in a short time frame.

Next Steps
* Multi-detector support.
* Further explainability studies.

* Incorporation of Solid State Detectors pulse shape simulation data.

Il - > = Correspondence:
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Why is the Universe
Matter Dominated?
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Standard Model of Particle Physics

* Within the Standard Model — total baryon and lepton

number is conserved.

* For every matter particle, we expect to see an
antimatter particle

* There must be a process that breaks the balance
matter and antimatter to account for observed
asymmetry

mass
charge %
spin

LEPTONS

three generations of matter

=2.2 MeV/c?
%

» U

* )

=4.7 MeV/c?

-%
« (d

down ' strange| bottom Jl photon
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-1

»

electron

<1.0 eV/c?
0

. Ve

electron
neutrino

Standard Model of Elementary Particles

interactions | force carriers

(bosons)
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% 0 0
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top Jl gluon higgs
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» . 2 8
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« ' W 3 o
tau O
neutrino ' W boson (O3S

Image Source: Wikipedia



Enter Neutrino—v

* Neutrinos are: * Importantly
* Neutral subatomic particles * Observations of neutrino oscillations
* Fermions (half-integer spin) show that neutrinos have MASS.
e« Come in 3 flavors * Discovery for which Takaaki Kajita &

Art McDonald received the 2015

Nobel Prize in Physics.

2015 NOBEL PRIZE

plectron

Tau

Arthur B.
MeDonald

LB RPN

The discovery of

Source : Michael McClellan



Majorana Particle

* These characteristics of neutrinos suggest it could be a Majorana Fermion — or its own
antiparticle.

V=V

* If the neutrino is Majorana, this could allow for baryogenesis (from neutrino leptogenesis)

* One possible explanation for matter — antimatter asymmetry.



Ghosthunting for Neutrinos

* Lack of charge, and extremely low
interaction cross-section make direct
neutrino measurements very difficult.

* Instead — we can use the theorized
process known as Neutrinoless Double
Beta Decay to probe Majorana nature of
neutrinos.

» Observing 0v3f would prove that
neutrinos are Majorana.

e — t@G&NDA B OX @ Henry Nachman 38
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Standard Model — Double Beta Decay

(A, Z) = (A, Z+2)+e +e +let+1/e

o
/ Observed in 11 different naturally occurring isotopes.
)

76
Ge

Among them: (Spoiler Alert)
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Large Enriched
Germanium Experiment
for Neutrinoless (3 Decay
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Innovation toward LEGEND-1000

MAJORANA DEMONSTRATOR
(MJD) : PPCs, low noise
electronics

LEGEND-200 : Now
taking data

GERDA : LAr veto, water shield

LEGEND-1000 : Conceptual design
development continuing

| P4 E
o A EGE 5 EL @ Henry Nachman
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Characterization

* Prior to installation,
detectors undergo tests to
confirm appropriate energy
resolution, pulse shape
reconstruction and other
qualities

= ° . E
e @ \\J\ 3 O @ Henry Nachman 44
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Characterization Data

* During characterization: detectors are

biased (given a voltage gradient) and take a
data with a Th-228 source. N\
—O— Top Source
« Data for this model is taken over two i

different runs:
« Top Source
» Side Source
» All data used in this model from a single Side Source
ORTEC ICPC detector (VO1387A)
» Characterization performed by Morgan
Clark at Oak Ridge National Lab on June 17,
2021.




Scaling up for L-1000

¢ AS The LEGEND —— Projected Schedule
experiment prepares for | 5-year ®"Ge procurement
L-1000 many detectors
will need to be
efficiently characterized 8007
- At peak ~2 & 6001
detectors/week £
uEJ 400 1
* Motivates a need for a
fast analysis tool .
* Such as the BDT
model | developed. N

Y2 Y3 Y4 Y5 Yé
Time since project start

~350

S10103}9p



Fit to calibration peaks

Compound Fit to Peaks

—— 228Th SEP (2103.5 keV)
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Single-Site Proxy Event

2614 keV
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Multi-Site Proxy Event

2614 keV

511 keV

Counts (log)

Calibrated Energy Spectrum /

228Th source
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L
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What Parameters are Extracted?

— P2 Comectea Wovcform

—— R S H
POle-ZerO (PZ)
/ Correction da)EdCl]arge




Current Amplitude

Single-Site Event Waveform Multi-Site Event Waveform

Current Current
10 A > I 0.0010 10 rr— I 0.0010
84 I 0.0008 84 I 0.0008
6 I 0.0006 6 - - 0.0006
) )
9 E Q <
< s < e
T 5
4 I 0.0004 — 4 I 0.0004 —
24 I 0.0002 2 +0.0002
04 . I 0.0000 04 I 0.0000
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Time (ns) Time (ns)
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Energy

* Three different methods for estimating the

100000
energy of an event were developed m DAQE
« Energy from data acquisition (DAQ) mex ofwid
system — simple trapezoidal filter 500007
» Offline trapezoidal filter
« Maximum of the waveform , 0
. J 40000 -
 Ultimately — DAQ Energy had a comparable
distribution to the other methods and was
chosen for its simplicity in integration into 200007
the pipeline
0 - Tt l T .
0 500 1000 1500 2000 2500

Energy proxy (arb)



What makes it Boosted?

: . o , Improved Model
* A single decision tree model is a "poor learner” on

its own.

* Boosting - growing multiple trees in a series, each
fitting to the residuals of the previous.

* Validation Metric — Binary Log Loss function
* Minimizing residuals of mischaracterized events

25 Ground truth tree 1 tree 2 tree 3
2.0 IE
1.5 )
1.0 ® >
. } ..
L 05 # . 8l + &b c
0.0 () o
-0.5 = e = n
-1.0 o
=15 8
-2.0
2 6 10 2 6 10
X X
S
i
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Model Settings

Build trees until
the metric does

Hyperparameter Name /leut\ /-/ not improve for
Number of Iterations Early Stopping: 10 10 iterations
Q (max 2000) j

Validation Metric Binary Log-loss
Learning Rate 0.0744
Number of Leaves 73
Bagging Frequency 62
Minimum data in Leaf 26
Max Bin 542
Drop Rate 0.330
Min Gain to Split 0.536
Boosting Algorithm Gradient-based One-Side Sampling (GOSS)




Training

* 2 models : 1 with only top data, 1 with a mix of top and side data (with data augmentation)

* Data is split into training : validation subsets with 70:30 ratio.

SEP Size 17710 2062 SEP Size 35420 3899
DEP Size 7365 2062 DEP Size 14730 3899
Trees 76 Trees 47




Data for Training

e Multi-Site Proxy : Single Escape Peak (SEP)
* Single-Site Proxy : Double Escape Peak (DEP)

» 2 Datasets : Top Source (Flood) Data & Side Source Data

Top Source 25300 10521
Side Source 4712 2097

. TLI — '.‘ :
b. = \\)\ % @ Henry Nachman 56




Top and Side Source Parameter Distribution

A/E Distributions
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Data Augmentation

Much more data exists for top source — vastly differently sized datasets can result in
unintentional bias in the model.

* SMOTE-NC: Artificially synthesize new data points by interpolating between existing points in
6-dimensional parameter space.

DCR vs. tDrift before SMOTE-NC DCR vs. tDrift after SMOTE-NC
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Note: this plot
does not
represent the data
used in this model
— it merely
visualizes how
SMOTE-NC works.

Source : A.Li,
J.Gruszko




Counts

[TDRIFT
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New # Waves 5231
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Counts
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Counts
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Background Events & Sideband Subtraction

Calibrated Energy Spectrum
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BDT Distribution — Top data

BDT Distribution - top data
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Receiver Operator Curve — Top data

Visualization of binary classification ROC performance - top data

« True Positivity Rate (rate of events correctly
classified as SS) vs False Positivity Rate (falsely
classified as SS)

o
©

« Perfect classifier would have a step function with an
AUC =1

« Random classifier would be a diagonal line with
AUC =0.5

o
o

True Positivity Rate
N

0.2 Classifier ~DEP SEP  AUC

AJE 90.0% 39.1% 0.57
BDT 90.0% 29.4% 0.72

Note: the A/E measure shown here is without drift

time correction or other methods used in the ool [ Joredens o e |
traditional analysis | " False Positivity Rate |



SHAP Feature Importance - Top

* Made by plotting Shapely BDT SHAP Feature Importance (top)
values for every event.
 Color of point represents /A DAQE
the ultimate classification. -
/DCR
* “Important” features have 1L080

a dumbbell shape

JTDRIFT B
/TDRIFT10 — &—-

/TDRIFT50 }. :

-3 -2 -1 0 1 2 3
SHAP value (impact on model output)
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Next Steps

1. Multi-detector support — In Progress
a. Increases total data yield
b. Helps eliminate possible bias from “quirky” detectors

2. New (and improved) parameters

3. Explainability expansion
a. Multivariate correlation studies

4. Other ML models — particularly those that look at the whole waveform, rather than just the
provided parameters.



Avenues for Publication

 Start with an internal LEGEND technical document.
* Let the larger collaboration know about the work | am doing and provide an opportunity

for guidance, and feedback

1. Depending on this package’s use in future characterization work — possible incorporation
into a paper on LEGEND's detector characterization efforts.

2. Contingent on reliable results on further explainability development — particularly multi-
variate analysis — possible standalone ML paper

——— /“\\A % @ Henry Nachman

)

—




Binary Log Loss

1 N
Hy(q) = —— >, ¥ - 10g(p(y) + (1 = y,) - log(1 = p(3))

i=1

Binary Cross-Entropy / Log Loss

M
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