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Introduction

Noise reduction in detector signals can help:
- Improve measurements of pulse amplitudes — better energy resolution
- ldentify low-energy signal events that are masked by electronic noise

- Improve background rejection techniques that are based on signal characteristics



Introduction

Motivation on deep learning:
«  Frequently used in noise removal in other fields
«  Often outperforms traditional denoising methods, e.g. moving average, Savitzky-Golay filtering
. Effective at denoising 1-dimensional electronic signals from HPGe detector
«  Our previous work using a convolutional autoencoder: Anderson et. al. Eur. Phys. J. C 82, 1084 (2022)
Current work:
« Denoising using unpaired data -> a noisy sample pulse does not need a corresponding target clean pulse for
training
Ultimate goal:

«  Denoising without the need of simulation



GAN - Generative Adversarial Network
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GAN - Generative Adversarial Network
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CycleGAN - Denoising Network Architecture

Autoencoder

Clean Pulses Generator:
Convolutional Autoencoder
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Noisy Pulses Generator:

Overcomplete Convolutional Autoencoder
(latent layer is expanded to store features from noisy pulses)
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Data Preprocessing and Augmentation

scaled to the same
scaled and shifted amplitude as the noise
horizontally and in 60keV pulses
vertically
Simulated pulse » Clean pulse (Y) + Real detector noise = Artificial noisy pulse (X)
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« Training dataset: ~1.3 million pulse pairs (75k multi-site events)

« Testing dataset: ~ 215k pulse samples (12.5k multi-site events)
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Preliminary Results - noise removal generator
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* Mean squared error of Gppisy2cieans €valuated by denoising the artificial noisy test dataset, is on the order of 107*
« Mean squared error achieved in our previous work using an autoencoder is on the order of 107>
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Preliminary Results - noise addition generator
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Next Steps

- Stabilize and optimize the training of GAN and CycleGAN

- Wasserstein loss function with a gradient penalty

- Denoising without the need of simulated pulses (i.e. no target label/ground truth)
- CycleGAN
- Trained using pairs of detector noise traces and real pulse signals
- Learns the underlying true waveform and the additive electronic noise

« DualGAN : arXiv:2007.01575
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