Atomic Compton Scattering Speaker: Chang-Hao Fang

Outline

- Research background and ab inito calculations
- Experiements and data analysis
- Result and impact on DM background

Measurements and ab initio Calculation of

Chang-Hao Fang @ PIRE fangch@stu.scu.edu.cn

Research Background and ab inito calculation

LDM and Detection Channels

Compton Scattering as Low-Energy Background

- Compton scattering: important ER channels, cannot be discriminated.
 - Step-like structures in the low-energy spectra: atomic binding effects.
- Performing advanced atomic approach with the Multi-configuration Dirac-(Hartree)-Fock (MCDF) method.

Chang-Hao Fang @ 2023 PIRE Collaboration Meeting

MCDF and RIA in Compton Scattering

- Ab inito calculation of Ge (by MCDF)
 - MCDF vs. HF: Relativistic, many-body (electron correlation, configuration interactions)
- Relativistic Impulse Approximation (RIA) approaches: reduction to a two-body interaction, a photon and an electron with momentum (Compton profile)
- Differential cross-sections

$$\left(\frac{d^{2}\sigma}{d\omega_{f}d\Omega_{f}}\right)_{\text{RIA}} = \sum_{\substack{nil\\nil\\ \text{Sum over the sub-shells}}} Z_{njl} \left(\frac{d^{2}\sigma_{njl}}{d\omega_{f}d\Omega_{f}}\right)_{\text{RIA}} = \frac{r_{0}^{2}m_{e}^{2}c^{4}\omega_{f}}{2} \int_{i} d^{3}p_{i} \frac{X}{d\omega_{f}d\Omega_{f}}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{RIA}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{KN}} \cdot S(\theta, \omega_{i}) \longrightarrow \begin{bmatrix} \text{Scattering function} \\ \# \text{ of activated elect} \end{bmatrix}$$

$$S(\theta, \omega_{i}) = \sum_{njl} Z_{njl}\Theta\left(\omega_{i} - B_{njl}\right) \int_{-\infty}^{p_{i}^{\text{max}}} J_{njl}(p_{z})dp_{z}$$

Chang-Hao Fang @ 2023 PIRE Collaboration Meeting

MCDF-RIA verus Data in EPDL

Sub-shells	$K \ 1s_{1/2}$	$L_{ m I} \ 2s_{1/2}$	$L_{ m IIa} \ 2p_{1/2}$	$L_{ m IIb} \ 2p_{3/2}$	$M_{ m I} \ 3s_{1/2}$	$M_{ m IIa} \ 3p_{1/2}$	$M_{ m IIb} \ 3p_{3/2}$	$M_{ m IIIa}\ 3d_{3/2}$	$M_{ m IIIb}\ 3d_{5/2}$	$N_{ m I} \ 4s_{1/2}$	$N_{ m IIa} \ 4p_{1/2}$	$N_{ m IIb} \ 4p_{3/2}$
MCDF	11119.0	1426.9	1257.3	1226.0	193.3	136.8	132.2	36.5	35.9	14.6	7.8	8.0
HF (EPDL)	11067.0	1402.3	1255.4		179.25	129.38		38.19		14.7	6.5	
Exp.	11103.1	1414.6	1248.1	1217.0	180.1	124.9	120.8	29.9	29.3		7.9	

MCDF, HF (EPDL), Experimental results [2, 3].

Chang-Hao Fang @ 2023 PIRE Collaboration Meeting

[1] G4EMLOW8.0

[2] B. Henke, E. Gullikson, and J. Davis, Atomic Data and Nuclear Data Tables 54, 181 (1993). [3] R. D. Deslattes, E. G. Kessler, P. Indelicato, et al., Reviews of Modern Physics 75, 35 (2003).

• MCDF-RIA VS. EPDL (Hubbell, Biggs et al.)[1]

- Ionization energy: MCDF is closer to Exp.
- Compton profile: match but mildly differ at high p_7 .
- SF (DCS): at most a factor of two difference in the low momentum transfer region.

Experimental Setup

Apparatus	
Source	6.6 mCi 137Cs
Front-end detector	10g n-type HPGe
Back-end detector	Nal[TI]
Shielding & collimator	5cm Pb + 18 mm hole

• Measurements:

- Energy spectra: $d^2\sigma/(dEd\Omega)$
- Scattering function

$$S(X)_{\text{s.a.}} = \left[\left(\frac{d\sigma}{d\Omega} \right)_{\text{s.a.}} / \left(\frac{d\sigma}{d\Omega} \right)_{\text{c.a.}} \right] \cdot S(X)_{\text{c.a.}}$$

• Key approach: accurate scattering angle calibration.

Determination of The Scattering Angle

	error(degree)
scattering angle of 0° error	≤ 0.01
calibrated horizontal plane error	≤ 0.02
arbitrary angle error	≤ 0.02
Total error	≤ 0.03

- Scattering angle is determined by calibrating horizontal plane, z-direction and arbitrary scattering angle.
- UNKNOWN source distribution:-> Measured source separation (0.27 ± 0.01 deq)
- Geometrical scattering angle is **NOT** identical to real scattering angle

Chang-Hao Fang @ 2023 PIRE Collaboration Meeting

• Geometric error is within 0.03 degree. Simulations in 2σ : Livermore ($12^{+0.1}_{-0.01}$ °), Monash ($12^{+0.03}_{-0.04}$ °)

Data Analyses: Candidates Selection

Cuts	Efficiency (%)
DAQ dead time	98.0
Inhibit	99.8
Pedestal	99.6
Q-A	99.7
Candidate selection	99.3
Total	96.4

- Data taking at 12, 5, 4, 3, 2, 1.5 degree.
- Basic cut: INHIBIT, Q-A, Pedestal
- Coincident candidate: Trigger time interval-HPGe energy parameter space

Data Analyses: Background

• Background is classified into two categories:

- concentrate at signal region.
- - Identified as source contribution and cross-checked with delicate simulations
 - Shape has minor dependence on scattering angles and removed from other angles

Chang-Hao Fang @ 2023 PIRE Collaboration Meeting

Accidental coincidence: uniformly distributed in the parameter space; Source related bkg:

• Amount of source related bkg is about 20% of the accidental coincidences background

- Compton peak region of 1.5 degree measurement dives into electronic noises.
 - Electronic noise is excluded by PSD cut in A-E(Ge) parameter space and efficiency correction has been applied on the simulated spectra.

12

- PSD efficiency correction introduces the largest systematic error (low-energy).
- PSD efficiency determine the analysis threshold of 1.5 degree: 180 eV.
- Suppress the investigation to lower momentum transfer region (See SF part).

Doubly Differential Cross Sections

• Penelope, Livermore model match but Monash model does not!

 Data prefers Livermore model. The differences between measurements and Monash model are significant.

80

60 -

40 -

20 -

60

40

20

0.5

Monash@12 deg: p-Value: 4.62148e-07. Beyond 5-sigma!! Chang-Hao Fang @ 2023 PIRE Collaboration Meeting

↓ Livermore Monash ↓ Exp.@4 °	Scat. Ang.	Livermore	Mona
	12	49/59	128.72
	5	50/59	122/5
	4	64/79	146/7
Livermore Monash	3	62/59	145/5
+ Exp.@1.5°	2	102/85	206/8
	1.5	110.93/97	164.81

1.0

1.5

2.0

Energy (keV

The Scattering Function

Chang-Hao Fang @ 2023 PIRE Collaboration Meeting

• The effective angles (real scattering angle) were derived from simulations and were found to shift to larger values than the exp calibration.

- More serious at small angles.
- Hard to approach lower X region with current setups.
- Measurements are relative closer to our ab initio calculations of SFs at small angles.
 - Current data points cannot tell the difference between Hubbell et al. and MCDF-RIA.

Influence on DM Backgrounds

Compton Background: Scattering Functions

- keV) and etc.
- Test conditions: scattering functions, source position and HPGe mass.

Chang-Hao Fang @ 2023 PIRE Collaboration Meeting

• Environmental gamma sources: ²¹⁴Pb(352 keV), ²¹⁴Bi(609 keV), ⁴⁰K(1461 keV), ²⁰⁸Tl (2614

• MCDF-RIA results are 5.3%-7.4% higher than the HF-RIA increasing with incident energy.

Compton Background: Source Position

• Environmental gamma sources: ²¹⁴Pb(352 keV), ²¹⁴Bi(609 keV), ⁴⁰K(1461 keV), ²⁰⁸Tl (2614 keV)

• Test conditions: scattering functions, source position and HPGe mass.

Chang-Hao Fang @ 2023 PIRE Collaboration Meeting

Compton Background: Detector Mass

• Environmental gamma sources: 214 Pb(352 keV), 214 Bi(609 keV), 40 K(1461 keV), ²⁰⁸Tl (2614 keV)

Test conditions: scattering functions, source position and HPGe mass.

- Geometrical effect: suppress the bkg below K-shell ionization threshold for 2.14%-11.97% increasing with incident energy.
- Non-flat structure increasing with incident

Summary

- Performing ab initio atomic many-body Compton scattering calculations.
 - MCDF: fully relativistic, many-body effects (electron correlation, configuration interactions) Significant difference on scattering function (Differential cross-section) in low-momentum
 - transfer region.
- Experiment to investigate low-momentum transfer Compton scattering behavior is accomplished.
 - Scattering angle is well calibrated and issues are fully concerned.
 - Background, efficiency and systematic errors are concerned.
- Livermore and Monash Compton model in Geant4 are not identical.
 - At 12 degrees, the difference with the Monash model exceeds 5 sigma.
- Current experimental setup is hard to clarify the differences on the scattering functions.
- Analyze the influence of SFs, detector mass and source position on Compton scattering for DM experiments with Ge detector.

Thanks for your attention