

Germanium Detector Passivation Techniques

Shasha LV (CDEX Colloboration) Beijing Normal University

PIRE GEMADARC Collaboration Meeting Agenda, June 1&2, 2023

- I. Background
- II. First-principle Simulation and Performance Evaluation of HPGe Detectors Passivated with Silicon Oxide Films
- III. Prophase Simulation, Film Fabrication, Passivation Evaluation on Germanium Oxynitride Passivation of Ge-based Devices
- **IV.** Conclusion

Rare event detection

北京師範大學

Implications for dark matter detection:

- Dark matter plays an important role in the formation and evolution of the universe
- Involves research topics such as elementary particles

Implications for $0\nu\beta\beta$ detection:

Neutrino mass order

- The only viable way to prove whether neutrinos are their own antiparticles is to be neutrinos,
- Understanding the neutrino mass origin problem

[1] Zwicky F. Die rotverschiebung von extragalaktischen nebeln[J]. Helvetica physica acta, 1933, 6: 110-127.

[2] ROSZKOWSKI L, SESSOLO E M, TROJANOWSKI S. WIMP dark matter candidates and searches-current status and future prospects[J]. Reports on Progress in Physics Physical Society (Great Britain), 2018, 81(6): 066201

Rare event detection

北京師範大學

[1] N. Abgrall, I. J. Arnquist, F. T. Avignone III et al. The processing of enriched germanium for the MAJORANA DEMONSTATOR R&D for a next generation double-beta decay experiment[J]. NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTION A, 2018 [2] AGOSTINI M, ARAUJO G R, BAKALYAROV A M, et al. Final results of GERDA on the search for neutrinoless double-β decay[J]. Physical Review Letters, 2020, 125(25): 252502

北京師範大學

Energy resolution (0.2% FWHM at 662keV), linear energy response, lower energy threshold

8

Material	Bandgap at 300 K (eV)	e-h pair creation energy (eV)	Density (g/cm ³)	Mean Z	
Si	1.12	3.6	2.33	14	
Ge	0.67	2.96	5.33	32	
Cd _{0.9} Zn _{0.1} Te	1.57	4.64	5.78	49.1	

Material	Hole mobility µ _h (cm²/V·s)	Electron mobility μ _e (cm ² /V·s)	Hole lifetime $\tau_h(s)$	Electron lifetime τ _e (s)	$\mu_h \tau_h$ (cm ² /V)	$\mu_e \tau_e$ (cm ² /V)
Ge (77 K)	42000 [43]	36000 [44]	2x10 ⁻⁴ [45]	2x10 ⁻⁴ [45]	>1 [31]	>1 [31]
Si (300 K)	450 [47]	1350 [47]	2x10 ⁻³ [46]	>10 ⁻³ [46]	>1 [31]	>1 [31]
CZT (300 K)	30 [48]	1100 [48]	1x10 ⁻⁶ [46]	3x10 ⁻⁶ [46]	5x10 ⁻⁵ [2]	5x10 ⁻³ [2]

Small band gap

Free carrier concentration of 10¹³ /cm³ at RT, 10⁹ /cm at 77 K High activated carrier leakage current at RT

Carrier injection current (77K is less than 1pA)

 $I_{tot} = AJ_{hi} + AJ_{ei} + I_{surf} + I_{bulk}$ surf

 $N_{+V_b}^+$

Table 3.3. Summary of key features for the different classes of electrical contacts on HPGe detectors.

Contact Type	Advantages	Disadvantages
Ion-implanted (B)	Thin, good electron blocking	No hole blocking, additional processing needed for segmentation
Li-diffused	Robust, good hole blocking	Thick, changes with time, transition region, difficult to segment, no electron blocking
Metal Schottky barrier	Thin, simple to construct, easily segmented, good electron blocking	Poor hole blocking, not robust, some lack of reproducibility
Amorphous semiconductor	Thin, blocks holes or electrons, doubles as passivation, easily segmented	Electron or hole blocking inferior to p-n junction, wide range of film properties

- The surface is sensitive to pollutants and water vapor, which changes the surface state and electric field distribution, make the surface charge collected.
- Surface suspension bond states and defects trap electrons and facilitate electron and hole separation, but also become the composite centers.
- Surface leakage current is generated.

Avoid passivation layer charge collection Avoid building up internal electric fields

CDEX experiments

CDEX experiment current and future plans^[1]

Experimental design: liquid nitrogen or liquid argon liquid directly cooled HPGe detector array CDEX experiment future plans: experimental scheme adopted by 100 kg and 1 T HPGe detector array^[1]

Surface passivation

Protection layer

- Eliminate pollutants
- Eliminate surface dangling and stress bonds
- ✤ High resistance
- Blocking hole or electron carrier injection

HPGe detector is bare immersed in liquid nitrogen with long-term, and the leakage current could tend to increase.

Solution: Passivation of HPGe detector

Achieve low leakage current and low threshold of detector

Realize stable operation of HPGe **barely immersed in liquid Nitrogen or Argon**

- Background
- First-principle Simulation, Passivation Evaluation and
 - **Performance of HPGe detectors with Silicon oxide Films**
- Prophase Simulation, Film Fabrication, Passivation Evaluation
 on Germanium Oxynitride passivation of Ge-based Devices
 Conclusion and Future Plan

Methods

First-Principle Simulation

Surface passivation changes the composition of conduction band and valence band ²⁵ edge electronic states to realize the regulation of band edge characteristics.

First-Principle Simulation

- N passivation has a direct bandgap, while O passivation transforms into an indirect bandgap
- ♦ Ge-OH has the best passivation effect.
- The strong electronegativity of O and N results in the rearrangement of electron cloud and the change of electron state distribution at the band edge.
- Passivation of -O and -N leads to increased surface recombination efficiency and surface leakage current, which affects surface charge collection.

SiOx Passivation by First-Principle Simulation

SiOx DOS: (a) TDOS, (b) Partial Density of State

Band structure: indirect band gap, lower band gap width than H passivation

北京師範大學

Shasha Lv, et al. Nuclear Science and Techniques (2021) 32:93.

SiOx Passivation by First-Principle Simulation

北京師範大學

Ge-SiO and Ge-Si₂O₃ Partial Density of State: (a) Ge-SiO, (b) Ge-Si₂O₃

- The density of states of different silicon oxygen atoms passivated significantly decreases compared to H passivation.
- The SiOx system reduces the DOS intensity and interfacial state density, and the fixed charge in the oxide layer forms an internal electric field.
- The passivation effect of Ge-SiOx is better with increase of O element.
- Si/O atoms are randomly mixed/bonded in Ge passivation layers with excellent electrical and chemical passivation properties

Shasha Lv, et al. Nuclear Science and Techniques (2021) 32:93.²⁸

- SiO (SiOx) : Microstructure is controversial: random bonding model, random mixing model, interfacial cluster mixing model.
- SiO₂: The flexibility of Si-O-Si bond makes SiO₂ have a variety of crystal forms and makes most of the chemical bonds at the interface remain saturated; There is a large amount of fixed positive charge in SiO2, which can produce field effect passivation.

5

SEM, XPS and Minority lifetime analysis

未镀膜

(1)

(2)

北京師範大學

0.00205

(1)

(2)

表1不同靶材样品XPS分析数据						
样品编号	靶材	Si峰中心位置	Si峰面积	O峰面积	Si: O	
1	SiO	102.74	25454.1	132319.5	1:1.40	
2	SiO ₂	103.66	14109.0	103095.7	1:1.97	

30

七京師範大學

Fig. 1. Schematic diagram of surface passivation of a HPGe crystal.

Two steps passivated HPGe

Methanol passivation, SiOx films passivation, bare immersion in LN2

Leakage current was monitored at all the critical process stages

北京師範大學

液氮裸泡探测器性能: Bias Voltage (V) 能量分辨率: FWHM范围1.80至1.5 keV 液氮环境中工作196天,在工作电压3600 V,耗尽电压1800 V下,维持超低漏电流 (1 pA)

- Background
- First-principle Simulation, Passivation Evaluation and
 - Performance of HPGe detectors with Silicon oxide Films
- Prophase Simulation, Film Fabrication, Passivation Evaluation on Germanium Oxynitride passivation of Ge-based Devices
 Conclusion and Future Plan

GeOxNy by First-Principle Simulation

北京師範大學

DOS of -O₃N is the lowest but not the optimal choice **DOS -O**N₂ is the best, which the lower DOS and moderate band gap

GeOxNy Film Preparation

- ➢ Homogeneous film
- > The amorphous state is strong and the growth is reverse random

GeOxNy Film Preparation

北京師範大學

GeOxNy Passivation Evaluation

北京師範大學

Thanks for your listening

lvss@bnu.edu.cn