Low Energy Data Cleaning for LEGEND

UNC Chapel Hill/TUNL

June 2, 2023

Jenny Solomon

Graduate Student,

THE UNIVERSITY of NORTH CAROLINA TUNE at CHAPEL HILL

Large Enriched

LEGEND Overview

Mission: "The collaboration aims to develop a phased, **Ge-76 based** double-beta decay experimental program with discovery potential at a **half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results."**

Select best technologies, based on what has been learned from GERDA and the MAJORANA DEMONSTRATOR, as well as contributions from other groups and experiments.

MAJORANA - Radiopurity of nearby parts (FETs, cables, Cu mounts, etc.) - Low noise electronics improves PSD - Low energy threshold (helps reject cosmogenic background)	GERDA - LAr veto - Low-A shield, no Pb	Both Clean fabrication techniques Control of surface exposure Development of large point-contact detectors Lowest background and best resolution 0νββ experiments
 First phase: Deploy 200 kg in upgrade of existing infrastructure at LNGS BG goal: <0.6 cts /(FWHM t yr) Discovery sensitivity at a half-life of 10²⁷ years Currently taking data 		 Subsequent stages: 1000 kg, staged via individual payloads Timeline connected to review process BG goal <0.03 cts/(FWHM t yr) Location to be selected

L-200 Current Status

LEGEND

- Germanium detectors operated in bath of atmospheric LAr for scintillation detection
- 142.3 kg of Ge detectors installed
 - Goal: reach 200 kg by end of 2023
- Taking data
 - Regular physics data and calibration data

Why LEGEND BSM?

LEGEND

Slide Credit: Samuel L. Watkins (LANL)

Low-Energy Background

LEGEND

L-1000 Background Model

For BSM physics sensitivities, we need a model for all energies

- Geant4-based simulations on the LEGEND-1000 geometry
- Realistic detectors

Slide Credit: Samuel L. Watkins (LANL)

Tracklike Signature Example: Composite DM

- Ultraheavy DM with large cross sections
 - Would interact multiple times
 - Would interact in a line (track)
 - Potentially can be background free via requirement of multiple scatters in a line
- Thanks to large exposure, potential to probe very high masses

Slide Credit: Samuel L. Watkins (LANL)

6/2/23 EGEND for Cleaning Data Energy NO Jenny Solomon

Tests of Fundamental Symmetries

Some LEGEND BSM Analyses

- Slow pulse cut
 - Remove energy-degraded events from near detector surface
- Liquid Ar veto
 - Remove events that generated significant numbers of photoelectrons in fibers
 - Ar-39 dominates at low energies
- Multiplicity
 - Remove events that interacted with multiple Ge detectors

A/E for Multi-Site Rejection

- Used A/E parameter as tool for creating cuts
- Multi-site events have low A/E values
- Made cuts to look only at events in circled region

Sample of Detectors Over 1 Week of Data Taking

- Used Waveform Browser to view
 waveforms of events in circled region
- Example of a multi-site event (what we tend to see at higher energies) that we would like to cut

Example Waveform for a Muti-Site Event

A/E for Slow Pulse Rejection

- Same 2D Histogram as on previous slide, but looking specifically at low energies
- Slow pulses also have low A/E values
- Made cuts to look only at events in circled region

Sample of Detectors Over 1 Week of Data Taking

- Used Waveform Browser to view waveforms of events in circled region
- Example of Slow Pulse event (what we see at low energies) that we would like to cut
- Demonstrates A/E can be useful at higher and lower energies to cut different types of events

Example Waveform for a Slow Pulse Event

LEGEND Collaboration

~50 institutions, ~300 members MAJORANA + GERDA + more:

LEGEND mission: "The collaboration aims to develop a phased, ⁷⁶Ge based doublebeta decay experimental program with **discovery potential** at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results."

Conclusions

- LEGEND has a rich BSM physics program
 - Dark matter, test of fundamental symmetries, etc.
- The physics can encompass a wide-range of energies
 - From keV scale to 10's of MeV
- First step: data cleaning (underway)
- A detailed BSM white paper is planned to be out this summer

Slide Credit: Samuel L. Watkins (LANL)

Solomon

Jenny

Low Energy Data Cleaning for LEGEND | 6/2/23

