Judging an excessive power as glitch or core-collapse supernova

With machine learning

Speaker: Andy Chen¹, Albert Kong², Chia-Jui Chou¹, En-Tzu Lin², Kuo-Chuan Pan², Shih-Chieh Hsu², Shu-Wei Yeh³, Surojit Saha², Yang Yi¹, Yu-An Chen¹

National Yang Ming Chiao Tung University, Taiwan
National Tsing Hua University, Taiwan
University of Washington, USA

2023/05/30

KIW 10th

Contents

- Enable MMA with machine learning
- Introduction to the ML4GW framework
- How to train the ML classifier model
- Results
- Summary

MMA Introduction

• Early alert from the GW detector can provide

prior information for EM counterparts.

• Possible candidate for MMA includes BNS merger,

Core-Collapse Supernova(CCSN) etc.

MMA Introduction

• We focus on recognizing the

difference of glitch and GW

signals after the detection

https://rtd.igwn.org/projects/userguide/en/latest/ analysis/index.html

MMA Introduction

- GW Inference-as-a-Service(GW-IaaS) provide efficient machine learning usage for speedy and accurate analysis.
- GW-laaS:
 - Hardware: Nvidia Triton inference server
 - Software: ML4GW packages

<u>A3D3, A3D3</u>

Example of Machine learning Alert system

- DeepClean: Non-gaussian noise reduction according to environmental noise 2005.06534, 2108.12430
- MLy: Machine Learning based coherent detection method 2009.14611
- CCSNet: Detection trigger classifier for glitch vs CCSN
- Sky-location: Still Under development

Data preparation

Signals in detector

CCSNs

Unlike CBC's chirp like structure in time frequency space CCSN waveform have various time frequency structure

BBH

Distribution of CCSN

Generating the two polarizations

- 34 different progenitor star (3D simulation)
- Uniform distribution for orientation, polarization, and sky-location in its parameter space

Injection to Handford, Livingston

- 4096 sampling rate
- Core bounce at different time
- Dynamic SNR

Distribution of CCSN

ML4GW provide fast SNR rescaling during training

Log normal SNR distribution:

- Mean = 15
- Variance = 15
- Low bound cut off = 1

Collecting Glitch using Omicron

- Omicron pipeline pick up "excessive power" using Q-Transform
- Q-Transform are similar to applying wavelet transformation to whitened signals
- Wavelet transformation is like a modified Fourier

transformation, it replace the sine wave with a sine Gaussian

wavelet for integration.

Training & Validation Data

- Glitch from 53K seconds of strain data from O3
 - Hanford 8K
 - Livingston 12K
- 4096Hz, 1 Second, 2 IFOs, whiten strain data
- 16K of CCSN injection in total for training and validation
- 75% for training 25 % for validation

The ML model and training method

WaveNet

We use dilation feature from <u>WaveNet</u>

• The dilation feature provide a larger receptive field for deep CNN layers

 For deep layer of CNN less neuron is required to capture same kernel width of the input data

Training performance

- Loss function: Cross Entropy
- Optimizer: Adam
- Scheduler: Learning rate schedule every

batch

Validation metric

- Recall, True Positivity Rate (TPR) = TP / (TP + FN)
- False Positivity Rate (FPR) = FP / (TN + FP)

- Receiver operating characteristic (ROC)
- AUC: Area Under ROC

Model Performance

• We normalize the AUC with it's max

possible area, so that the max area is still

equal to one

• The performance may look worse but can be improved by hyperparameter tuning

- Machine learning method is at booming stage for Multi-messenger Astrophysics.
- The GW Inference-as-a-service(GW IaaS) can provide an end-to-end alert pipeline for MMA.
- We trained a classifier for distinguish lots of different CCSN waveforms from unmodeled glitches.
- The performance of the current NN model is poor but it can be improved by hyperparameter tuning.
- We would like to test the model with Omicron triggered CCSN injection versus glitch in near future.

Thank You!!

Appendix

ML4GW framework

- ML4GW provides the software utils that accelerate the training and inference process.
- The Triton server helps to save the latest pre-trained model and schedule the computational resource for inference.
- ML4GW provide the software tools for data preprocess on GPU, and high throughput inference.

