

Developing Topological Superconductivity Through Hybrid Material Systems

Chung-Ting Ke Assistant Research Fellow Institute of Physics

2023.08.02

中央研究院物理研究所

TAIWAN

X

Quantum Technology

One can use the quantum state to build up more advanced quantum technologies: such as quantum communication, quantum computer, quantum sensing, and detectors

Source: Google quantum

Source: Basel University

Source: JPL

To engineer and understand the quantum device is important to meet our technology needs.

Qubit research

中央研究院物理研究所 INSTITUTE OF PHYSICS, ACADEMIA SINICA

Develop outstanding qubits

Qubit research

Develop outstanding qubits

Optimize qubit & environment

- 1. Longer coherent time
- 2. Optimize the readout
- 3. Better measurement scheme and more

Search for a different qubit scheme

- 1. Tolerant to noise
- 2. A different qubit scheme
- 3. Different choices of materials and more

A different rout

Using topological phase

Exchange particle to register the information

Information is immune to local perturbation.

中央研究院物理研究所

Yoshinori Tokura et al, Nature Review Physics (2019)

A different rout

Using topological phase

Exchange particle to register the information

Information is immune to local perturbation.

Kitaev 2001

 γ_1

- A pair of zero energy states(MZM)
- Nonlocality
- Topological gap
- Need a p-wave superconductor

Using hybrid material systems

 γ_2

Topological Superconductivity

Realize the topological phase

<u>SC + TI</u>

Fu and Kane PRL (2008)

<u>SC + QH</u>

Mong et al. PRX (2014)

中央研究院物理研究所 INSTITUTE OF PHYSICS, ACADEMIA SINICA

SC + SOC semi. + Zeeman

Lutchyn. et al. PRL (2010) Oreg et al. PRL. (2010)

Using hybrid material systems, it is possible to create MZMs

Quantum Hall effect and superconductivity

h-BN

define the junction region.

MoRe SiO₂

٠

۲

Constructing the Quantum Hall states requires a clean 2D system.

Quantum Hall and superconductivity

Quantum Hall and superconductivity

中央研究院物理研究所 INSTITUTE OF PHYSICS, ACADEMIA SINICA

Quantum Hall effect and superconductivity

Amet, Ke et al. Science (2016)

Semiconductor+SC

z

中央研究院物理研究所 INSTITUTE OF PHYSICS, ACADEMIA SINICA

InSb Josephson junction

Planar Josephson junction

中央研究院物理研究所 INSTITUTE OF PHYSICS, ACADEMIA SINICA

Hell et al. PRL (2017)

- For a π -JJ with strong SO:
- 1. Lower the required Zeeman field.
- 2. For 2D system, scalability is possible.
- 3. Phase control provides additional tuning knob.
- 4. Large topological phase space for exploring MZM.

Fornieri *et al. Nature* (2019) Ren *et al. Nature*(201*9*)

$0 - \pi$ transition

Superconducting order parameter:

 $\Psi(r) \propto \cos(\boldsymbol{\delta k} * \boldsymbol{r})$

Condition:

 $\delta k * l = (2N + 1)\pi/2$

Hart et al. Nat. Phys.

$$E_Z = \frac{\pi}{2} E_T \qquad g\mu_B B = \frac{\pi}{2} \frac{\hbar v_F}{L} \qquad B \propto \frac{\sqrt{n}}{gm^* L}$$

Control parameters : B, L and \sqrt{n}

 $0 - \pi$ transition

中央研究院物理研究所 INSTITUTE OF PHYSICS, ACADEMIA SINICA

 $B \propto \frac{\sqrt{n}}{gm^*L}$

Ke, Moehle et al. Nat. Comm. (2019)

Gate control and Phase diagram

中央研究院物理研究所 INSTITUTE OF PHYSICS, ACADEMIA SINICA

X

Andreev spectra

中央研究院物理研究所 INSTITUTE OF PHYSICS, ACADEMIA SINICA

y (μm)

Two sets of gates(QPC, red circle) are made at the edge of the junction.

b

Allow us to measure two edges simultaneously to probe the DOS of the junction edge. The inductance of the SQUID can strongly influence the Andreev spectrum in the experiment. The influence of the magnetic vector potential on the local Andreev states. The field results in a very different spectrum for the top and bottom ABSs.

Moehle et al. Nano Lett. (2023)

Andreev spectra: modeling

Numerical simulation of our system:

- The phase dependence of the supercurrent position is stronger in the ballistic case.
- More ABS is located at the edge for the disordered case.
- Top and bottom are also different due to disorders.

Moehle et al. Nano Lett. (2023)

Many possibilities

Using functionality of VdW materials or substrate

Preliminary results

Induce SO in graphene

Preliminary results

Probing high Tc layered superconductors

BSCCO (2212)

hBN/graphene/BSCCO Contact metal: Ag/Au

Probing hybrid system with advanced devices

BSCCO

graphene

Preliminary results

More degree of freedom

Flip Process Diagram

Twist Process Diagram

Extend study on materials

3D cavity on 2D materials

Frequency(GHz

中央研究院物理研究所 INSTITUTE OF PHYSICS, ACADEMIA SINICA

Other research directions

Better superconducting qubit

Improve the resonator quality

Higher coherence time with a better package

Probing the unique states via cQED/STM

In summary

X

 \bullet

•

- Many interesting materials can be explored
- We aim to explore and develop a better qubit for future quantum computers.
- To explore different physics, our measurement setup aims to cover Hz to GHz regions.
- Understanding the intrinsic properties of hybrid materials is important to

Quantum phase transition

Collaborations

中央研究院物理研究所 INSTITUTE OF PHYSICS, ACADEMIA SINICA

Industrial Technology **Research Institute**

Website

Thank you Any questions?