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2D twisted structures
• Twist angle between 2D monolayers:

a tunable parameter allowing for continuously varying the band structure
⇒ band-structure engineering

Nam and Koshino, PRB 2017 Bistritzer and MacDonald, PNAS 2011

• Moiré pattern with wavelength λ = a0/[2 sin(θ/2)]
• θ: twist angle between layers; a0: lattice constant of graphene monolayer
• λ ≈ 13 nm for a0 = 0.246 nm and θ = 1.1◦

• (Quasi-)flat bands close to the magic angle (e-e interaction > bandwidth ≈ kinetic energy)
⇒ a platform for strongly correlated electron systems



Strongly correlated systems in twisted bilayer graphene
• Magic-angle twisted bilayer graphene (TBG)

Cao et al., Nature 556, 43 (2018); Cao et al., Nature 556, 80 (2018)

• Carrier density electrically tuned by voltage gate
• Band insulator for 4e (or 4h) per moiré unit cell and semimetal at charge neutrality point
• Unconventional states of matter when the Fermi energy lies within the (quasi-)flat bands
• Phase diagram: resembling high-Tc materials
• (Mott-like) correlated insulating phase at half filling (both flat bands)
• dome-like superconductivity regions in e- and h-doped sides of Mott phase (lower flat band)

• Earlier study on moiré pattern and electronic structure of MoS2/WSe2 heterobilayers
Zhang et al., Sci. Adv. 3, 1601459 (2017)



Subsequent observations of correlated insulator and superconductor

• More robust electronic states in samples with reduced inhomogeneity
• pressure-enhanced superconductivity and correlated insulator
• correlated insulating phases also at 1/4 and 3/4 fillings (both flat bands)
• superconductivity domes (both flat bands) with Tc up to 3 K

Yankowitz et al., Science 2019 Lu et al., Nature 2019



Anomalous Hall effect in TBG

• TBG nearly aligned to the top hBN layer

• Ferromagnetic hysteresis with a coercive field B ∼ O(0.1 T) at 3/4 filling for T < 3.9 K

• Large Hall resistance and chiral edge modes at B = 0 (upper flat band)

• Possible indication of the existence of topological phases

Sharpe et al., Science 2019



Experimental indication of topological matter in TBG

• Quantized Hall resistance Rxy = h/e2 at 3/4 filling at B = 0, T = 1.6 K in TBG aligned to hBN
⇒ quantum anomalous Hall insulator (QAHI) or Chern insulator with Chern number C = 1

Serlin et al., Science 2020



Subsequent observations of QAHI or Chern insulator in TBG

• A sequence of Chern insulator states with Chern number C = ±1,±2 and ±3 observed
at the filling factor ν = ±3/4,±2/4 and ±1/4, respectively
• complete sequence: Nuckolls et al., Nature 2020; Choi et al., Nature 2021; Das et al., Nat. Phys. 2021
• partial sequence: Park et al., Nature 2021; Saito et al., Nat. Phys. 2021; Stepanov et al., PRL 2021;

Lin et al., Science 2022; Tseng et al., Nat. Phys. 2022

⇒ topologically nontrivial phases as a common feature across samples and setups



Challenge for theoretical analysis

Cao et al., Science 2021

• Experimental observations of unconventional
electronic states in TBG motivated numerous
theoretical works

• Correlation: beyond single-particle picture

• Challenge:
large number of atoms ∼ O(104) due to large
moiré unit cells

• To develop tractable analytic tools, a theoretical
framework identifying relevant degrees of
freedom is highly desirable!
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Continuum model for TBG
• Single-particle Hamiltonian: hybridization of Dirac cones in the two layers

Hsp =

(
H(t)

γσ Tγ(x)
T†
γ(x) H(b)

γσ

)

• basis: (ct
Aγσ, c

t
Bγσ, c

b
Aγσ, c

b
Bγσ)

T

• Dirac Hamiltonian for the TBG with a twist angle θ:

H(η)
γσ =

(
−ηVd γℏvF|k|e−iγ(θk−ηθ/2)

γℏvF|k|eiγ(θk−ηθ/2) −ηVd

)
• θk: angle of the momentum direction; Vd: interlayer bias; η: layer index; γ: valley index

• Interlayer hybridization (with the 2D coordinate x):

Tγ(x) =
w
3

3∑
j=1

eiγqj·(x+x0) Tγ,j, Tγ,1 =

(
1 1
1 1

)
,Tγ,2 = (Tγ,3)

∗
=

(
ei2γπ/3 1

e−i2γπ/3 ei2γπ/3

)
• q1 ≡ −kθey, q2 ≡ kθ(

√
3

2 ex +
1
2 ey), q3 ≡ kθ(−

√
3

2 ex +
1
2 ey), and kθ ≡ 8π

3a0
sin(θ/2)

Bistritzer and MacDonald, PNAS 2011; Efimkin and MacDonald, PRB 2018

Cao et al., Nature 2018



Low-energy effective model

• For sufficiently large Vd, the continuum model Hsp can be projected onto the conduction band
of the top layer and the valence band of the bottom layer

• Low-energy effective model: describing massive Dirac fermion(
ℏvF|k| −γ∆− cos θk − i∆+ sin θk

−γ∆− cos θk + i∆+ sin θk −ℏvF|k|

)
• effective mass from the interlayer hybridization:

∆±,γ ≡
|TAB

γ | ± |TBA
γ |

2

ϕ±,γ ≡
arg(TAB

γ )± arg(TBA
γ )

2

• spatial dependence in ∆−: a spatially dependent sign of mass (i.e., spectral gap)
• mapped to a (px ± ipy) superconductor:
⇒ gapless modes between domains with opposite mass set by sign(γ∆−)



Triangular network of domain walls in TBG

• Spatial profile of ∆−: following moiré pattern of TBG

Δ-

• sign(∆−): opposite signs of effective mass in neighboring domains
• dashed lines: domain walls separating domains with the opposite sign of (∆−)

• Low-energy solutions (Jackiw-Rebbi problem):
⇒ gapless modes emerge at domain walls between AB- and BA-stacking regions

• 2D triangular network formed by 1D conduction channels along domain walls
San-Jose and Prada, PRB 2013; Nam and Koshino, PRB 2017; Efimkin and MacDonald, PRB 2018



2D network or array of 1D channels in TBG and similar nanostructures
• STM/TEM/transport features of domain-wall

modes between AB- and BA-stacking areas

Kerelsky et al., Nature 2019; Jiang et al., Nature 2019

Alden et al., PNAS 2013; Rickhaus et al., Nano Lett. 2018

• Arrays of 1D channels in other 2D materials
• twisted WTe2

Wang et al., Nature 2022; Yu et al., arXiv:2307.15881

• strain-engineered graphene

Hsu et al., Sci. Adv. 6, aat9488 (2020)



Incorporating e-e interactions in 2D network of moiré bilayer systems

• 2D network of interacting quantum wires at nanoscales:

• Unconventional states of matter in 1D or quasi-1D systems:
• interacting electrons in 1D: (Tomonaga-)Luttinger liquid (TLL)
• coupled parallel interacting wires: sliding TLL

⇒ intrawire and interwire forward scattering of e-e interactions on equal footing
• triangular network of 1D wires: 3 sets of sliding TLL

Wu et al., PRB 2019; Chen et al., PRB 2020; Chou et al., PRB 2021

*related work on square network: Chou et al., PRB 2019
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2D network formed by gapless domain wall modes

• Electrons in 2D network consisting of interacting quantum wires

• Fermion field operator ψ(j)
ℓmσ(x):

• array index j ∈ {1, 2, 3}
• wire index m ∈ [1,N⊥] within each array
• moving direction along the wire ℓ ∈ {R ≡ +,L ≡ −}
• spin σ ∈ {↑≡ +, ↓≡ −}
• local coordinate x along the wire

• Parallel wires within an array:
• chemical potential µ and Fermi wave vector kF (identical for all wires)



Bosonization

• Expressing the fermion field in terms of boson fields:

ψ
(j)
ℓmσ(x) =

Uj
ℓmσ√
2πa

eiℓkFxe
−i√

2
[ℓϕj

cm(x)−θj
cm(x)+ℓσϕj

sm(x)−σθj
sm(x)]

• Uj
ℓmσ: Klein factor; a: short-distance cutoff

• Commutation relation between the boson fields:[
ϕj
ξm(x), θ

j′

ξ′m′(x′)
]

= i
π

2
sign(x′ − x)δjj′δξξ′δmm′

• index ξ, ξ′ for charge (c) or spin (s) sector
• charge density operator ∝ ∂xϕ

j
cm; spin density operator ∝ ∂xϕ

j
sm

• charge current operator ∝ ∂xθ
j
cm; spin current operator ∝ ∂xθ

j
s,m

• Intrawire or interwire Coulomb (density-density) interaction ∝ ∂xϕ
j
cm∂xϕ

j
cn

⇒ forward-scattering terms (R ↔ R & L ↔ L) in the quadratic form
⇒ still diagonalizable



Bosonized model for the quantum-wire network

• Quantum-wire network with the quadratic interaction terms:

H(j)
0,c =

∑
mn

∫
ℏdx
2π

[
V j
ϕ,mn∂xϕ

j
cm∂xϕ

j
cn + V j

θ,mn∂xθ
j
cm∂xθ

j
cn

]
H(j)

0,s =
∑

n

∫
ℏdx
2π

[
us

Ks
(∂xϕ

j
sn)

2 + usKs(∂xθ
j
sn)

2
]

• V j
ϕ,mn, V j

θ,mn, Ks: forward-scattering terms (Rm ↔ Rn & Lm ↔ Ln)
• ϕj

cn, θj
cn, ϕj

sn, θj
sn: boson fields



General scattering operator

• Backscatterings (R ↔ L): non-quadratic (sine-Gordon) form
• analyzed by perturbative renormalization-group (RG) technique
• potential for various electronic states

• General operator describing various scattering processes:

O{sj
ℓpσ}

(x) =
∑
m=1

∏
p

∏
j

[
ψ
(j)
R(m+p)↑(x)

]sj
Rp↑
[
ψ
(j)
L(m+p)↑(x)

]sj
Lp↑
[
ψ
(j)
R(m+p)↓(x)

]sj
Rp↓
[
ψ
(j)
L(m+p)↓(x)

]sj
Lp↓

• {sj
ℓpσ}: integer set for all values of (j, ℓ, p, σ) with p ∈ integers

• s ̸= 0 for a given p: the p-th nearest neighbor wires participate in the scattering
• physically, we expect s → 0 for large p (finite-range interactions)

• Constraints on sj
ℓpσ due to conservation laws

• Scatterings involving different arrays at intersections:
• generically allowed but typically less RG relevant
• we focus on the (intrawire/interwire) scatterings within an array (j suppressed)



Constraints on sℓpσ from conservation laws

• Condition from global particle number or charge conservation (without “external” pairing):∑
p,σ

(sRpσ + sLpσ) = 0

• Condition from momentum conservation for non-moiré systems:

kF

∑
p,σ

(sRpσ − sLpσ) = 0

• In moiré systems, electrons experience a moiré potential with a spatial period of λ

⇒ moiré periodic potential provides “crystal momentum” ∝ reciprocal lattice vector 2π/λ



Unconventional scatterings allowed by moiré periodic potential
• Moiré periodic potential: partially relaxing the constraint from the momentum conservation

• Generalized condition from momentum conservation (for clean systems):

kF

∑
p,σ

(sRpσ − sLpσ) =
2π
λ

× integer

⇒ the momentum difference between the initial and final states of certain scattering processes
can be compensated by crystal momentum of moiré potential

⇒ additional processes can take place at certain fillings

• “Resonance condition” from charge conservation and generalized momentum conservation:

ν =
P∑

p,σ sRpσ
, P ̸= 0

• filling factor: ν = kFλ/π
• ν = 1 corresponds to 4 electrons per moiré unit cell in TBG

• We refer to this type of processes as moiré umklapp scatterings
⇒ destabilizing the network: moiré correlated states



Examples for moiré umklapp scatterings (Oi and Oii)

• Oi: processes involving only intrawire scatterings in
individual wires

(sR0σ, sL0σ) → (Nσ,−Nσ)

Nσ ∈ N
Oi =

∑
m

(
ψ†

Lm↑ψRm↑
)N↑(ψ†

Lm↓ψRm↓
)N↓

• Oii: processes involving correlated intrawire scatterings
in multiple wires
(sR0σ, sL0σ, sRnσ, sLnσ) → (N0σ,−N0σ,Nnσ,−Nnσ)

N0σ,Nnσ ∈ N
Oii =

∑
m

(
ψ†

Lm↑ψRm↑
)N0↑(ψ†

Lm↓ψRm↓
)N0↓

×
[
ψ†

L(m+n)↑ψR(m+n)↑
]Nn↑[ψ†

L(m+n)↓ψR(m+n)↓
]Nn↓

with Nσ = 2

with N0σ = Nnσ = 1

• Further categorized into 4 subtypes: Oi–Oiv

• Moiré umklapp scatterings allowed at fractional fillings (ν = P/4 for illustration)



Examples for moiré umklapp scatterings (Oiii and Oiv)

• Oiii: processes involving interwire scatterings but still
conserving the particle number for each wire

(sR0σ, sL0σ, sRnσ, sLnσ) → (Nσ,−Nσ,Nσ,−Nσ)

Nσ ∈ N
Oiii =

∑
m

[
ψ†

L(m+n)↑ψRm↑
]N↑[ψ†

L(m+n)↓ψRm↓
]N↓

×
[
ψ†

Lm↑ψR(m+n)↑
]N↑[ψ†

Lm↓ψR(m+n)↓
]N↓

• Oiv: scattering processes that do not conserve particle
numbers for individual wires

(sR0σ, sL0σ, sRnσ, sLnσ) → (Nσ,−Mσ,Mσ,−Nσ)

Nσ,Mσ ∈ N, Nσ ̸= Mσ

Oiv =
∑

m

[
ψ†

L(m+n)↑ψRm↑
]N↑[ψ†

L(m+n)↓ψRm↓
]N↓

×
[
ψ†

Lm↑ψR(m+n)↑
]M↑[ψ†

Lm↓ψR(m+n)↓
]M↓

with Nσ = 1

with (Nσ,Mσ) = (2, 0)



Bosonized general scattering operator

• Bosonized form of O{sℓpσ}:

O{sℓpσ} =
∑
m=1

Exp
{ i√

2

∑
p

[
Sp,cϕc(m+p) + S̄p,cθc(m+p) + Sp,sϕs(m+p) + S̄p,sθs(m+p)

]}
,

Sp,ξ = sLp↑ − sRp↑ + ξ(sLp↓ − sRp↓),

S̄p,ξ = sLp↑ + sRp↑ + ξ(sLp↓ + sRp↓),

ξ ∈ {c ≡ +, s ≡ −}

• Global charge conservation:
∑

p S̄p,c = 0
• Generalized momentum conservation: ν

∑
p Sp,c = 2P

• conventional scatterings: P = 0
• moiré umklapp scatterings: P ∈ nonzero integer

• For processes conserving charge (spin) with a fixed p: S̄p,c (S̄p,s) → 0

• Bosonized O{sℓpσ}: scaling dimensions and RG relevance upon specifying V j
ϕ,mn and V j

θ,mn
• here we focus on more general (and universal) features



Systematic construction of moiré umklapp scatterings involving 2 wires
• Fermion form of Oi–Oiv (with sℓpσ listed below and N denoting positive integer):∑

m=1

∏
p=0

[
ψR(m+p)↑

]sRp↑[ψL(m+p)↑
]sLp↑[ψR(m+p)↓

]sRp↓[ψL(m+p)↓
]sLp↓

sℓpσ ν Sp,ξ (ξ ∈ {c ≡ +, s ≡ −})

Oi ℓδp0Nσ , Nσ ∈ N P∑
σ Nσ

−2δp0(N↑ + ξN↓)

Oii ℓ(δp0 + δpn)Npσ , N0σ, Nnσ ∈ N P∑
σ(N0σ+Nnσ)

−2(δp0 + δpn)(Np↑ + ξNp↓)

Oiii ℓ(δp0 + δpn)Nσ , Nσ ∈ N P
2
∑

σ Nσ
−2(δp0 + δpn)(N↑ + ξN↓)

Oiv
δℓR(δp0Nσ + δpnMσ)
−δℓL(δp0Mσ + δpnNσ) ,

Nσ, Mσ ∈ N,
Nσ ̸= Mσ

P∑
σ(Nσ+Mσ)

−2(δp0 + δpn)δξc(N↑ + M↓)
−2(δp0 + δpn)δξs(N↑ − N↓)

• S̄p,c = 0 for Oi–Oiii CHH et al., arXiv:2303.00759

• S̄p,c = 2(δp0 − δpn)(N↑ − M↑) for Oiv

• For simplicity we include examples only for S̄p,s = 0
• operators with a nonzero S̄p,s are expected to be less RG relevant



Moiré correlated states at fractional fillings
• Oi–Oiii: correlated insulating states with a fully gapped system at fractional fillings

• Example:

Oi + O†
i ∝

∑
m

cos
(
4
√

2ϕcm
)

⇒ a sum of sine-Gordon terms containing ϕcm fields

• When Oi is RG relevant, all the ϕcm fields are gapped
⇒ a fully gapped, correlated insulating state

• ϕcm pinned to minima in the strong-coupling limit:
ϕcm → odd integer × π/(4

√
2)

• Tunneling between two neighboring minima gives a kink in ϕcm field:
ϕcm

∣∣∣
kink+

− ϕcm

∣∣∣
kink−

= ±π/(2
√

2)

• Spatial derivative ∂xϕcm: related to charge density ρc

• Fractional excitations with charge e/2 associated with the kink



Gapless chiral edge modes from Oiv process

• S̄p,c ̸= 0 for Oiv: particle number not conserved for individual wires

• Simplest case involving the n-th nearest neighbor wires:
Sn,c = S0,c, S̄n,c = −S̄0,c, and Sp,c, S̄p,c = 0 otherwise

• Introducing chiral fields Φℓm = −ℓϕcm + f θcm for each wire:[
Φℓm(x),Φℓ′m′(x′)

]
=iℓπδℓℓ′δmm′ f sign(x − x′),

f =− S̄0,c/S0,c

• The perturbation from Oiv process:

δHiv = giv

∫
dx
(

Oiv + O†
iv

)
∝ giv

∑
m=1

∫
dx cos

{S0,c√
2

[
ΦL(m+n) − ΦRm

]}
⇒ involving right- and left-moving modes in the interior of the system

• There remain gapless chiral modes:
ΦL,1, · · · ,ΦL,n at one edge and ΦR,N⊥ , · · · ,ΦR,(N⊥−n+1) at the opposite edge
(similarly for the other arrays)



Fractional excitations
• Defining Φ̃m,n = [ΦL(m+n) − ΦRm]/2:

δHiv ∝ giv

∑
m=1

∫
dx cos

(√
2S0,cΦ̃m,n

)
• gapping out bulk modes in the interior of the system
⇒ moiré correlated state with an insulating bulk and gapless edge modes

• Φ̃m,n pinned to minima: Φ̃m,n → odd integer × π/(
√

2S0,c)

• Fractional excitations with charge 2e/S0,c associated with the kink



Exploring moiré correlated states through gapless edge modes

• At certain fractional fillings, Oiv leads to an insulating bulk with gapless chiral edge modes
⇒ resembling quantum anomalous Hall effect in TBG

• In the moiré correlated state, the system hosts fractional excitations

• It would be challenging to directly detect the fractional charge
⇒ probing the moiré correlated state through the edge modes

• Assuming a single mode ΦR,N⊥ → ϕ at an edge for simplicity, where the chiral field ϕ satisfies[
ϕ(x), ϕ(x′)

]
= iπf sign(x − x′)

• Effective edge theory from the commutator:

Sedge

ℏ
=

∫
dxdτ
4πf

[
− i∂xϕ∂τϕ+ ve

(
∂xϕ
)2
]

⇒ experimental setups to detect and characterize the edge modes



Scanning tunneling spectroscopy (STS)

low T

high T

ϵ

ρ
(ϵ
,T
)

created by Microsoft Image Creator

• Local density of states at the edge:

ρ(ϵ) =
1
π

Re
[∫ ∞

0
dt eiϵt/ℏ

〈
ψe(t)ψ†

e (0)
〉]

• Universal scaling curve for temperature T and energy ϵ (measured from Fermi level):

ρ(ϵ,T) ∝ T
1
f −1 cosh

(
ϵ

2kBT

) ∣∣∣∣Γ( 1
2f

+ i
ϵ

2πkBT

)∣∣∣∣2
• power law |ϵ|1/f−1 at very low T
• scaling parameter determined by universal fraction f , independent of system details



Current-bias curve of interedge tunneling
• Proposed edge transport measurement:

low T

high T

V

I t(
V
,T
)

• Interedge tunneling process:

St = t0

∫
dτ ei(ϕ1−ϕ2)/f

• t0: non-universal tunnel amplitude
• ϕ1, ϕ2: chiral fields in two separate edges

• Current-bias (It − V) curve at temperature T:

It ∝ T
2
f −1 sinh

(
eV

2kBT

) ∣∣∣∣Γ(1
f
+ i

eV
2πkBT

)∣∣∣∣2
⇒ another universal scaling formula with a scaling parameter set by f



Conductance correction induced by interedge backscattering
• Proposed edge transport measurement:

• Interedge backscattering process:

Sb = vb

∫
dτ ei(ϕ1−ϕ2)

• vb: non-universal backscattering strength
• ϕ1, ϕ2: chiral fields in two separate edges

• Conductance correction depending on the bias (V) and temperature (T):

|δG| ∝
{

V2f−2, for eV ≫ kBT
T2f−2, for eV ≪ kBT

⇒ power-law behavior with a scaling parameter set by f



Summary

• Bosonic description for general scatterings and electronic states in moiré systems

• Moiré correlated states and fractional excitations from moiré umklapp scatterings

• Correlated states hosting a gapped bulk and gapless edge modes at fractional fillings
(resembling quantum anomalous Hall effect observed in experiments)

• Proposed spectroscopic and transport setups for experimental verification
CHH et al., arXiv:2303.00759

• Outlook:
• phase diagram from the detailed RG analysis CHH et al., in preparation

• further characterization of edge modes through shot noise
• Majorana and parafermion zero modes with proximity-induced superconductivity



Nematicity in normal and superconducting states of TBG

• Anisotropic resistivity in the presence of an in-plane magnetic field
• broken rotational symmetry in both normal and superconducting states
• similar features in iron-based superconductors

Cao et al., Science 2021



Earlier theoretical works on 2D network of TLL

• Earlier works on 2D generalization of coupled Luttinger liquids adopted for cuprates
• smectic metal or stripe phase

Emery, Fradkin, Kivelson, and Lubensky, PRL 2000

• sliding Luttinger liquid
Vishwanath and Carpentier, PRL 2001

• crossed sliding Luttinger liquid phase
Mukhopadyay, Kane, and Lubensky, PRB(R) 2001

• 2D and 3D crossed sliding Luttinger liquid phase
Mukhopadyay, Kane, and Lubensky, PRB 2001

• Correlated phenomena in 2D investigated using the language of TLL
⇒ motivation for investigating electronic states in a 2D network of TLL wires

• Instability of (crossed) sliding Luttinger liquids towards various quantum Hall states
Kane, Mukhopadyay, and Lubensky, PRL 2002; Klinovaja and Loss, PRL 2013; Sagi and Oreg, PRB 2014;

Klinovaja and Tserkovnyak, PRB 2014; Teo and Kane, PRB 2014, and more ...



Recent theoretical works on 2D network of TLL in moiré systems

• Network models related to twisted bilayer systems:
• coupled-wire construction in the language of conformal field theory

Wu, Jian, and Xu, PRB 2019

• the presence of superconducting and correlated insulating phases
Chou, Lin, Das Sarma, and Nandkishore, PRB 2019

• generalization to a triangular net of coupled wires
Chen, Castro Neto, and Pereira, PRB 2020

• instability towards charge density wave phase
Chou, Wu, and Sau, PRB 2021

• non-Fermi liquids
Lee, Oshikawa, and Cho, PRL 2021

• Existing works on the network model of TBG focused on insulating and superconducting states

• We explore the possibility for topological phases and chiral edge modes in moiré systems



Conventional scatterings (without relying on moiré potential)

• Scattering processes are generally allowed for any kF, provided that∑
p,σ

(sRpσ − sLpσ) = 0

• Together with the particle number conservation
∑

p,σ(sRpσ + sLpσ) = 0, we have∑
p,σ

sRpσ =
∑
p,σ

sLpσ = 0

⇒ conservation of the particle number for each moving direction along the wires

• These conventional scatterings characterize electronic states independent of fillings
⇒ “crystalline states” in Kane et al. PRL 2002

• In moiré systems, the momentum conservation condition is partially relaxed, allowing for
scattering processes even when

∑
p,σ sRpσ ̸= 0 or

∑
p,σ sLpσ ̸= 0



Electronic states due to conventional scatterings

• Charge density wave coupling
(sRp↑, sLp↑, sRp↓, sLp↓) → (−Np↑,Np↑,−Np↓,Np↓)

Npσ ∈ Z

Ocdw =
∑

m

∏
p

[
ψ

†

R(m+p)↑ψL(m+p)↑
]Np↑[ψ†

R(m+p)↓ψL(m+p)↓
]Np↓

⇒ charge density wave phase when Ocdw is RG relevant

• Josephson coupling (singlet pairing)
(sRp↑, sLp↑, sRp↓, sLp↓) → (−Mp,Np,Np,−Mp)

Np,Mp ∈ Z

Osc =
∑

m

∏
p

[
ψ†

R(m+p)↑ψ
†
L(m+p)↓

]Mp
[
ψR(m+p)↓ψL(m+p)↑

]Np

⇒ superconducting phase when Osc is RG relevant

• Examined in Chou et al. PRB 2019; Chen et al. PRB 2020

with (N0σ,Nnσ) = (−1, 1)

with (M0,Mn) = (−1, 1)

• Electronic states from conventional scatterings:
• momentum conservation regardless of moiré potential (independent of carrier density)
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