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Homemade 100-TW laser system at NCU
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n wavelength = 810 nm

n pulse energy = 3 J

n pulse duration = 30 fs

n peak power = 100 TW

n 20 2focused intensity > 10  W/cm

30 fs : 1 sec = 1 sec : 1M years

1 attosecond = 1/1000 fs
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High-order harmonic generation (HHG)
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Three-step model of HHG



Electron trajectory
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Output photon energy
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events time scale

human racing, mechanical shutter

fast circuits, molecule rotation

slow molecule vibration

inter-atom electron evolution

millisecond

nanosecond

picosecond

femtosecond

attosecond

< Ultrashort optical pulses can be applied to resolve the dynamics 

of very fast processes.

microsecondfast protein folding

chemical reaction, electron transition

Time scales of different processes



High-harmonic generation from Ar gas

raw data form x-ray imaging spectrometer

pump energy = 7 mJ

pump wavelength = 810 nm

pump duration = 45 fs

peak intensity

    = 14 25.6 × 10  W/cm

nozzle diameter = 2 mm

backing pressure = 70 psi

atom density = 18 −31 × 10  cm

n condition:
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n the 25th harmonics:

wavelength = 32.4 nm

photon number = 81.26 × 10

pulse energy = 0.77 nJ

conversion efficiency

    = −71.1 × 10



wavelength
    = 32.4 nm
beam diameter
    = 3.28 mm (FWHM)
beam divergaence
    = 1.33 mrad
pulse energy
    = 0.77 nJ
source diameter

    = 150 mm (FWHM)
pulse duration
    = 45 fs

n the 25th harmonics:

High-harmonic generation from Ar gas
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25th HHG beam Profile

peak spectral brightness = photons/sec/mm /mrad /0.1%BW223.7 × 10  2 2

(NSRRC U9 beamline = 185 × 10  2 2photons/sec/mm /mrad /0.1%BW)

peak photon flux = photons/sec/0.1%BW209.1 × 10  

(NSRRC U9 beamline = 161.5 × 10  photons/sec/0.1%BW)
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pump energy = 21 mJ

pump wavelength = 810 nm

pump duration = 37 fs

peak intensity = 16 21.1 × 10  W/cm

atom density = 20 −31.2 × 10  cm

n condition:imaging x-ray spectrometer

wavelength = 17.7 nm

photon energy = 70 eV

photon number = 63.1 × 10

pulse energy = 0.035 nJ

conversion efficiency = −91.7 × 10

n the 45th harmonic

High-harmonic generation from He gas



 

pump energy = 10.3 mJ

pump wavelength = 810 nm

pump duration = 35 fs

peak intensity = 15 28.3 × 10  W/cm

atom density = 19 −31.0 × 10  cm

wavelength = 10.1 nm

photon energy = 122.7 eV

photon number = 32.3 × 10

pulse energy = 0.045 pJ

conversion efficiency = −124.3 × 10
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n condition:

n the 81st harmonic



Phase-matching condition

n phase matched n phase mismatched
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n Generally the phase mismatch is represented by the wave- 
number mismatch.

: harmonic order

(−)

n The mismatch is resulted from the dispersion of gas and 
plasma, and the Gouy phase shift.

(+)

Phase-matching condition

: driving frequency

: harmonic frequency

(−) (+/−)



HHG intrinsic dipole phase
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<It is an additional phase shift that arises from the process of 
ionization and recombination.



Optimization of EUV harmonic generation

argon gas jet
L1

driving pulse

2-D EUV spectrometer

EUV CCD

grating

in
te

n
si

ty
(a

rb
. 
u

n
it

s)

wavelength

31

po
si

ti
on

 x 29 27 25

24 27 30 33
wavelength (nm)

31
29

27 25

0.5

0.0

1.0EUV spectrometer raw image



Tomography of the HHG process
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3-D phase-matching profile measurement
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3-D phase-matching profile measurement
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Reconstruction of the HHG growing curve

calculated near-field yield

short
long

yi
el

d 
(a

rb
. u

ni
ts

)

L (mm)

1.0

0.5

0.0yi
el

d 
(a

rb
. u

ni
ts

)

L (mm)

far-field 27th HHG yield

1.0

0.5

0.0
0.0 0.4 0.8 1.61.2

experiment
calculation

2.0 0.0 0.4 0.8 1.61.2 2.0

<Harmonic yield

<The harmonic generation process is experimentally resolved 
in situ with complete 3-D phase matching profile 
measurement and tomography of the growing curve.

Ref: Phys. Rev. A 104, 023112 (2021)



Toward keV hard x-ray harmonic generation

n Use ions as the interacting medium.

higher
ionization potential

higher ionization intensity
and thus higher Up

higher cut-off
photon energy

n The plasma dispersion dominates the phase-matching condition.

n Control the dipole phase variation to achieve phase matching.

(neglected) (+)(−)(−)

1+He : I  = 54.42 eV p ~ 2 keV
16 2I  ~ 1.1 × 10  W/cm  d

1+Ne : I  = 40.96 eV p ~ 1 keV
15 2I  ~ 5.0 × 10  W/cm  d



Using divergent driving pulse

He gas

z

r

zini zfinal0

focal plane

3-D Gaussian pulse

peak electric field
at the focal spot

: pulse energy

: beam waist radius

: pulse duration
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focal plane

zini zfinal

n Cut the gas distribution into a series of thin slices. 

n Calculate the propagation of the driving pulse passing through 
each slice one by one, incorporating the effect of ionization, 
diffraction, and dispersion.

He gas

Propagation of the driving pulse



Propagation of the driving pulse

n transverse effects: natural diffraction and ionization defocusing
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Propagation of the driving pulse

n plasma dispersion

refractive index: plasma frequency:

wavenumber:

group delay from z  to z :j j+1

group-delay dispersion from z  to z :j j+1



Propagation of the driving pulse

n Dispersion due to Gouy phase shift

additional wavenumber due to Gouy phase shift:

group delay from z = 0 to z:

group-delay dispersion from z = 0 to z:

group-velocity dispersion:



Ionization loss

n Overcome the ionization potentials of the bound electrons.

I : ionization potential of the helium first electronp1

I : ionization potential of the helium second electronp2

0

energy

atomic potential

position
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Electron is accelerated by the driving laser field directly.

ionization

laser field

Above-threshold-ionization (ATI) heating

residual (absorbed) kinetic energy:

: driving laser intensity at the ionization time t0



electron
oscillation

attenuation coefficient:

plasma
thermal motion

electron-ion
scattering

Inverse bremsstrahlung heating

: electron density

: electron temperature



Thomson scattering

Thomson scattering: scattering by free electron

attenuation coefficient:



Propagation of the driving pulse

n Driving laser field at z :j+1

peak electric field at z :j+1 pulse duration at z :j+1

accumulated group delay from  z to z :ini j+1

accumulated GDD from  z to z :ini j+1
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He gas density = 1.33 × 10  cm
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Case 1: 655th (1 keV) harmonic generation 



gas jet position z = 7~9.5 mm:

pulse duration = 30 fs

wavelength = 810 nm
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Case 1: 655th (1 keV) harmonic generation 
focal spot waist radius = 40 μm (b=6.2mm)

pulse energy = 35 mJ
17 ‒3

He gas density = 1.33 × 10  cm
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Case 1: 655th (1 keV) harmonic generation 
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n Trace a fixed harmonic wavefront which is initially generated 
at z = z , r = 0, and t = 0.ini

z

t-C(z=0)

zini zfinal

-100 fs
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driving pulse

harmonic wavefront
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n Driving laser field met by the harmonic wavefront:

Calculation of harmonic generation



Local harmonic field generated at position z:

empirical
constant

p = 5
Phase of the Local harmonic field:

Source density:

Accumulated harmonic field:

Calculation of harmonic generation



Calculation of harmonic generation

harmonic order q = 655
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n Calculation of the dipole phase:
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Calculation of harmonic generation
n Calculation of the phase mismatches:

dipole phase mismatches

total phase mismatches total phase mismatches



Calculation of harmonic generation
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n Calculation of the accumulated harmonic yield

long-trajectory

perfect phase matching

short-trajectory

n The amplitude of the long-trajectory harmonic field reaches 
95% relative to the ideal condition of perfect phase-matching, 
corresponding to a relative conversion efficiency of .90%



Temporal gating effect and bandwidth
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n harmonic yield for different
harmonic wavefront:

n harmonic yield for different
harmonic order:

n Since the dipole phase is intensity dependent, the total phase-
matching condition varies for different harmonic wavefront initiated 
at different starting time t . Such temporal gating leads to a temporal 0

window of about 3.4-fs width (FWHM).

n The phase-matching bandwidth covers about 3 harmonic orders.



Temporal gating effect and bandwidth
focal spot waist radius = 55 μm

pulse energy = 22 mJ
16 ‒3

He gas density = 7.9 × 10  cm

gas jet position z = 18~20.5 mm

pulse duration = 8 fs

wavelength = 810 nm
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n With a shorter driving pulse duration, the temporal window is 
shortened to 1.0 fs. The width is shorter than half of the 2.7-fs 
driving laser period, ensuring that the output HHG will be gated to an 
isolated attosecond pulse.

n The bandwidth covers about 5 harmonic orders, supporting a pulse 
duration of about 130 as (FWHM).



Conclusion

n A new scheme of ion-based HHG for 1-keV hard x-ray is 
proposed.

n The phase-matching condition is achieved by balancing the 
negative plasma dispersion, Gouy phase shift, and the 
positive dipole phase variation.

n The intensity-dependent phase-matching condition serves as 
a temporal gating. Isolated-attosecond-pulse output can be 
obtained with 8-fs driving pulse duration.

n It would be a promising x-ray source for the research of 
ultrafast phenomena.
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