

Prospects of laser wakefield electron accelerator mechanisms, specifications, and potential applications

周紹暐 (Shao-Wei Chou) Department of Physics National Central University

Courtesy of DESY/Science Communication Lab

Volume 43, Number 4

PHYSICAL REVIEW LETTERS

23 JULY 1979

Laser Electron Accelerator

T. Tajima and J. M. Dawson Department of Physics, University of California, Los Angeles, California 90024 (Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18} W/cm² shone on plasmas of densities 10^{18} cm⁻³ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

Classical RF accelerators v.s. plasma

Maximal accelerating fields due to breakdown:

 $E_{max}=20MV/m$

10-30km long accelerators to generate TeV expensive

In plasmas there is no breakdown! much higher

accelerating fields in

plasma density oscillations - plasma waves

10³-10⁴ x higher fields than in RF acceler

Generation of Wakefield

Plasmas can support large Electrostatic fields of 100 GV/m for $n_e = 10^{18} cm^{-3}$

Quiver motion:

 $a_0 = \frac{eE}{m\omega c} = 1 \Leftrightarrow I = 10^{18} W cm^{-2}$ Ponderomotive force:

$$< F^{(2)}(r,t) > = -\frac{1}{4} \frac{e^2}{m\omega^2} \nabla E(r,t)^2$$

Resonant Excitation:

$$c\tau_{pulse} \approx \frac{\lambda_p}{2} = \frac{\pi c}{\omega_p} \sim \frac{1.7 \times 10^{10}}{\sqrt{n_e}}$$

Characteristic scales of LPA

Plasma wavelength

 $\lambda_p \approx 33 \ \mu m \ / \sqrt{n_0 \ (10^{18} cm^{-3})}$

- for ~ 10¹⁸ cm⁻³ $\rightarrow \lambda_p$ ~ 30 μ m
- LPA produce ultrashort bunches

Accelerating field

assumption: in linear regime, all electrons oscillate at ω_p

```
E_0 = m_0 c \omega_p / e \approx 96 \ GV/m \cdot \sqrt{n_0 (10^{18} cm^{-3})}
```

- for ~ 10¹⁸ cm⁻³ \rightarrow E₀ ~ 100 GV/m
- Accelerating gradients several orders of magnitude larger than conventional RF cavities

"Bubble acceleration" principle

3D non-linear regime (bubble regime)

- Ponderomotive forces of laser larger than space charge restoring force of the ions
- \Rightarrow All electrons of the plasma are expelled
- \Rightarrow ionic cavity \Rightarrow linear fields

 $a_0 = 4$ driver = laser ion cavity plasma density

Useable phase range (accelerating & focusing)

Quasi linear regime $a_0 \sim 1$ Non linear regime $a_0 \geq 4$ laser pulse density axial field Ez radial field Er **1**_____e**e**e+ 🗖 e+ 🗖

Quasi linear regime

quasi-symmetric ranges of useable phases

Bubble regime

very asymmetric regions

- focusing for e-
- defocusing for e+

□ Ideas for e⁺ focusing

- Combine multiple laser modes
- Use of orbital angular momentum lasers (OAM) to drive doughnut wakefields

Injection in Wakefield

Phase velocity and γ_{ph} of laser wakefield

Short laser pulse ($L < \lambda_p = 2\pi c / \omega_p$) excites plasma wave with large amplitude.

Light in plasma (linear approximation)

$$\omega_{Laser}^2 = \omega_p^2 + c^2 k_{Laser}^2$$

$$v_{\text{group}}^{\text{laser}} = \frac{d\omega_L}{dk_L} = c\sqrt{1 - \omega_p^2/\omega_L^2} \equiv v_{\text{phase}}^{\text{plasma}}$$

$$\gamma_{ph} = 1/\sqrt{1 - v_{ph}^2/c^2} = \omega_L/\omega_p = \sqrt{n_{\text{crit}}/n_e}$$

Dephasing length

 $\begin{aligned} & \underline{Acceleration \ phase} \\ & \Delta \tau = \left| \omega_p \left(\Delta t - \Delta x / v_{ph} \right) \right| = \pi \\ & T_d \cong L_d / c \qquad L_d \\ & \text{Time between injection } \quad \text{Dephasing} \\ & \text{and dephasing } \quad \text{length} \end{aligned}$ $& L_d = \frac{\pi / \omega_p}{(1/v_{ph} - 1/c)} \approx \frac{\pi / \omega_p \cdot 2c}{1 - v_{ph}^2 / c^2} \approx \lambda_p \gamma_{ph}^2 \\ & \text{Estimate of maximum particle energy} \end{aligned}$

 $W_{\max} \approx E_{\max} L_d \approx \gamma_{ph}^2 (E_{\max} \lambda_p)$

Energy gain limitations

- □ Laser **Diffraction** ~ Rayleigh range
 - Controlled by relativistic self-guiding, pre-formed plasma channel, capillary guiding...
- □ Beam plasma wave **Dephasing** ($v_p < v_{e-}$) $L_{max} \propto n_0^{-3/2}$
 - Controlled by density tapering
- $\Box \text{ Laser energy Depletion} \qquad L_{deplete} \propto \lambda_p^{-3} / \lambda_L^{-2} \propto n_0^{-3/2}$
 - Laser energy deposition into wave excitation
- Accelerating Gradient $G \sim E_0 = mc\omega_p/e \propto \sqrt{n_0}$
- Energy Gain $W = G \times L_{acc} \propto 1/n_0$
- Laser peak power $P_{laser} \propto 1/n_0$

To increase the energy gain in a plasma module Decrease the density and increase the laser power

Energy Limitations

• Electron energy gain =
$$L_{acc} \times E_{acc}$$

• Diffraction (b) $b = 2Z_R = \frac{2\pi\omega_0^2}{\lambda}$ $b \approx 230 \,\mu\text{m}$

• Depletion
$$(L_{DP})$$
 $E_{plasma}^2 L_{dp} = E_{Laser}^2 L$
 $L_{dp} \propto \frac{\lambda_p^3}{\lambda_0^2} \begin{cases} 2a_0^{-2}; a_0 \ll 1\\ 1; a_0 \gg 1 \end{cases}$ $L_{dp} \approx 80 \ \mu m$

• Electron dephasing
$$(L_D)$$
 $L_D \sim \frac{\lambda_p^3}{\lambda_L^2} \propto \tau_{pulse}^3$

Depends on the pulse duration

 $(c\tau_{pulse} = \lambda_p/2)$

5 fs $\rightarrow n_e = 8x10^{19} \rightarrow L_D \approx 80 \,\mu\text{m}$

26 fs $\rightarrow n_e = 5x10^{18} \rightarrow L_D \approx 5 \text{ mm}$

$$c\tau_{pulse} = L_{D}$$

• Injector is of prime importance

- Determines the performances of the overall accelerator : charge, energy spread, emittance
- Better to decouple the injection mechanism from the acceleration mechanism
 - Indivudual adjustment of parameters, stability, control

External injection

- Fine definition of beams delivered by conventional photo-injectors
- Issues: to achieve an ultra-short bunch < λ_p/4 ~10µm (30 fs) possible solution : longer bunch injection, further self-compressed and accelerated in the plasma wakefield, but limited to low charges (1-2 pC)
- Synchronization between laser and injected beam

Internal injection

- Various mechanisms more or less complex to implement
- Issues: to achieve high charge > 100 pC, and low energy spread
 ⇒ the trapping of e- by the plasma wave should be highly localized

1. Self-injection (so-called bubble or blow out regime): needs strong wakefield to trap the cold plasma e-

- On-axis or off-axis injection
- Non-linear regime
- Self-guiding
- \Rightarrow Uneasy to control

S. Bulanov et al., PRE 58, R5257 (1998) C.G.R. Geddes et al., PRL 100, 215004 (2008) CUPHYS

Pump

pulse

Injection

pulse

Plasma wave

Beating

2. Counterpropagating Pulses

- Excite plasma wave below the self-injection threshold
- Counter-propagating injection pulse: to generate a beating with main pulse → triggers the injection

3. Ionization-induced injection

- Ionization of inner shells of high Z atom (N,Kr,Ar) ٠ at the peak intensity of the laser pulse
- e-injected at the proper phase for trapping and acceleration to high energies
- Potential for high charge > 100 pC but high E spread

NCUPHYS DEPARTMENT OF PHYSICS NATIONAL CENTRAL UNIVERSITY

Produced Wakes A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi Phys. Rev. Lett. 104, 025003 - Published 15 January 2010

4. Density transition injection

DEPARTMENT OF PHYSICS NATIONAL CENTRAL UNIVERSIT

"Bubble acceleration" principle

Characteristics:

- High efficiency (~20%)
- Quasi-monoenergetic electron spectrum ($\Delta E/E \sim 3-5\%$)
- Low normalized emittance (few mm•mrad)
- Large accelerating fields (100GV/m 1TV/m)
- Very short acceleration distance (100µm 1mm)

Requirements:

• Relativistic laser intensities 10¹⁸-10¹⁹ W/cm²

C.G.R. Geddes et al., Nature 431, 538, (2004)

S.P.D. Mangles et al., Nature 431, 535, (2004)

J. Faure et al., Nature 431, 541, (2004)

GeV: channeling over cm-scale

• Increasing beam energy requires increased dephasing length and power:

Capillary $\Delta W[GeV] \sim I[W/cm^2]/n[cm^{-3}]$

- Scalings indicate cm-scale channel at ~ 10^{18} cm⁻³ and ~50 TW laser for GeV
- Laser heated plasma channel formation is inefficient at low density
- Use capillary plasma channels for cm-scale, low density plasma channels

LETTERS

GeV electron beams from a centimetre-scale accelerator

Published online: 24 September 2006; doi:10.1038/nphys418 G

W. P. LEEMANS^{1*†}, B. NAGLER¹, A. J. GONSALVES², Cs. TÓTH¹, K. NAKAMURA^{1,3}, C. G. R. GEDDES¹, E. ESAREY^{1*}, C. B. SCHROEDER¹ AND S. M. HOOKER²

1.5 J, 38 TW,Plasma filled capillaryDivergence(rms): 2.0 mrad40 fs, a = 1.5Density: 4x10¹⁸/cm³Energy spread (rms): 2.5%Charge: > 30.0 pC

3000 mm 2000 1000 200 400 600 1000 800 MeV spectrum x 10 counts/dE 800 200 400 600 1000 MeV

1.0 GeV Beam Generation

Multi-GeV Beam Generation

NCUPHYS DEPARTMENT OF PHYSICS NATIONAL CENTRAL UNIVERSITY

LWFA X-ray source: Betatron Radiation

SCALING LAWS

- Betatron frequency: $\omega_{\beta} = \omega_p / \sqrt{2\gamma}$
- Transverse momentum: $a_{\beta} \propto \sqrt{\gamma n_e} r_{\beta}$
- Divergence: $\vartheta = a_{\beta} / \gamma$
- Critical photon energy: $E_c \propto \gamma^2 n_e r_{\beta}$
 - Efficiency: $N_{phot/cycle} = \alpha a_{\beta}$
 - Wavelength:

$$\lambda_{h} = \frac{\lambda_{\beta}}{h2\gamma_{e}^{2}} \left(1 + \frac{a_{\beta}^{2}}{2} + (\gamma_{e}\varphi)^{2} \right) = \frac{\sqrt{3}\pi c}{h\omega_{p}\gamma_{e}^{3/2}} \left(1 + \frac{a_{\beta}^{2}}{2} + (\gamma_{e}\varphi)^{2} \right)$$

DEPARTMENT OF PHYSICS

<u>Scientific Reports</u> volume 9, Article number: 7796 (2019)

Nature Communications volume 6, Article number: 7568 (2015) Ù

LWFA X-ray source: Free electron laser

Future TeV Collider-Staging

Physics Today March 2009; page 44-49

Thanks For Your Attention!!

Questions?

