

Recent development of laser wakefield accelerator at NCU

Shao-Wei Chou (周紹暐)^{*,1,2}, Sung-Wei Huang^{1,2}, Wei-Cheng Liu^{1,2}, Chen-Yu Tsai^{1,2}, Shih-Hung Chen¹, Ming-Wei Lin³, Hsu-Hsin Chu^{1,2}

¹ Department of Physics, National Central University (NCU), 32001 Zhongli, Taiwan

² Center for High-energy and High-field Physics, 32001 Zhongli, Taiwan

³ Institute of Nuclear Engineering and Science, National Tsing Hua University, 300044 Hsinchu, Taiwan

24.11.2023 CHiP

Principle of Shock-front injection

Transverse structure of Wakefield

Properties of Tail-wave injection

Tilted Shock-front injection

Enhancement of Betatron radiation

Summary

Content

Principle of shock-front injection

F Massimo et al 2018 Plasma Phys. Control. Fusion 60 034005

Physics of Plasmas 25, 043107 (2018)

1000

z (µm)

1500 2000

2500

(a)

(파 100 페 0 0

> 12 10

> > 8

0

20

10

-10

20

10

(mm)

2.5

0.5

0

0

2

Straight

¹⁰⁰⁰z (μm)¹⁵⁰⁰

Tilted

1000 1500 z (μm)

Straight

1000 1500 2000 z (μm)

2000 2500

2000 2500

e (×10¹

2500

500

500

-Exp

Sim

500

-20 1550 1560 1570 1580 1590

-20

--Tilted shock: laser --Tilted shock: electrons

-Straight shock: laser

500

-Straight shock: electron

z (μm)

z (µm)

Physics of Plasmas 24, 083106 (2017)

Transverse Structure of the Wakefield

*a*₀=1.8

 $a_0 = 3.6$

Source of the Injected Electrons

Simulation Setting

Laser wavelength = 810 nmDuration = 42.43 fs W_0 = 8-10 μ m a_0 = 2-4.3 Focal position = 292.5 μ m VORPAL/OSIRIS

Laser evolution pedestal = $4.73 \times 10^{24} \text{ m}^{-3}$ Acceleration plateau = $3.87 \times 10^{24} \text{ m}^{-3}$

T

NCUPHYS DEPARTMENT OF PHYSICS NATIONAL CENTRAL UNIVERSITY

Injection v.s. Ejection

<mark>y [μm]</mark> (m1) y (m11 -10 -20 -15 -30 0 L 200 -20 200 x (µm) x (µm) x [μm] Tail wave injection y [μμ] y (µı) y (m1) -10 -10 -20 -15 -20 200 -30 x [μm] x (µm) x (µm)

"Beam loading" injection

NCUPHYS DEARTMENT OF PHYSICS NATIONAL CHITRAL UNIVERSITY

-10 -20 -30 x [μm]

Laser-driven Betatron Radiation

Laser pulse

e- betatron orbit

Synchrotron radiation

 $\theta = K/\gamma$

 $\lambda_{\mathcal{B}}$

 r_{β}

⊕ ⊕ ⊕ ⊕ion channel

SCALING LAWS

- Betatron frequency: $\omega_{\beta} = \omega_p / \sqrt{2\gamma}$
- Transverse momentum: $a_{\beta} \propto \sqrt{\gamma n_e} r_{\beta}$
- Divergence: $\vartheta = a_{\beta} / \gamma$
- Critical photon energy: $E_c \propto \gamma^2 n_e r_{\beta}$
- Efficiency:
- Wavelength:

 $N_{phot/cycle} = \alpha a_{\beta}$

NATIONAL CENTRAL UNIVERSITY

Enhancement of Betatron Radiation

Comparison of injection mechanism by NCU 100TW laser system

Peak: 115.4 MeV

→ FWHM = 4.9 MeV

Energy spread = 4.3%

150

150

Cutoff energy: 142.5 MeV

200

Energy (MeV)

100 Energy (MeV)

Energy (MeV)

250

70

~20 pC

350

400

1500

1000 ('n'e)

Due to PID

oscillation

500

300

Injection method	Electron density (cm ⁻³)
Ionization injection (N_2)	2.0×10^{18} (neutral)
Self-injection (He)	$8.5 imes 10^{18} - 1.0 imes 10^{19}$
Shock-front injection (He)	3.7×10^{18}

Tunable monoenergetic electron beams

Classical wavebreaking limit field: ~96 × $\sqrt{n_0(\text{cm}^{-3})}$ (V/m) = 185 G V/m

> Observed 96.5-281 GV/m

Enhancement of Betatron Radiation by Ionization-Enhanced Shock-Front Injection

Enhancement of Betatron Radiation by Ionization-Enhanced Shock-Front Injection

Plan of High-Gain Harmonic-Generation FEL in NCU

Electron Beam Parameters		
Electron beam energy [MeV]	250	
Beam size, rms [µm]	90	
Normalized emittance [mm-mrad]	0.5	
Peak current [A]	3000	
Energy spread [%]	0.5/1/2	
Bunch length[fs]	5	

Seed Laser Parameters		
Wavelength[nm]	266	
Peak power[MW]	200	
Rayleigh length[m]	5	

Undulator Parameters		
Radiator period [mm]	20	
Radiator type	planar	
Radiator parameter, K	1.496/1.075	
Operating field, B ₀ [T]	0.57	
Radiation wavelength [nm]	88/66	
Modulator period [mm]	50	
Modulator Type	planar	
Modulator parameter, K	1.756	
Operating field, B ₀ [T]	0.376	
Radiation wavelength [nm]	266	

- Energy spread <1%</p>
- Normalized emittance < 0.5 mm mrad
- Energy > 200 MeV
- Charge > 30 pC
- Seeding: 266 nm
- EUV: 66.7 nm

Summary

- Monoenergetic electrons are generated by the tail-wave injection
- Tilted shock front leads to one-side injection and increases the amplitude of the betatron oscillation
- Preliminary results show the possibility of the enhancement of the X-ray brightness

Thanks For Your Attention!!

