Exploring new frontiers in laser-driven ion acceleration with the aid of artificial intelligence

- Yasuhiro Kuramitsu
- Graduate School of Engineering, Osaka University
 - **CHiP Annual Meeting**
- 23–24 Nov 2023 Evergreen Palace Hotel (Chiayi)

Nonthermal Universe

[Nagano & Watson, 2000]

from Hoshino

Non-Thermal process

Thermal distribution Nonthermal distribution Water never be hotter than fire.

Diffusive shock acceleration

- Fermi acceleration (1949)
 - cosmic ray acceleration by moving magnetic fields
- Diffusive shock acceleration (DSA), Axford et al. (1977), Bell (1978), Blandford & Ostriker (1978)
 - Fermi acceleration at collisionless shocks
 - Always acceleration due to U1>U2 for one cycle flight
 - High acceleration efficiency ~(U1-U2)/c
 - naturally and universally explains cosmic ray spectra, $f(\gamma) \propto \gamma^{-2}$

Extragalactic cosmic rays

- Possible sources: Relativistic collisionless shocks \bullet
 - Active galactic nucleus (AGN) jets ($\gamma \sim 10$)
 - Gamma-ray bursts ($\gamma > 100-1000$)
 - Pulser wind ($\gamma \sim 10^{6-7}$)
- A possible mechanism
 - wakefield acceleration Chen+ 2002 PRL Lyubarsky 2006 ApJ Hoshino 2008 ApJ Kuramitsu+ 2008 ApJL

Iwamoto+ ...

. . .

Crab Nebula

from Hoshino

Wakefield Acceleration By Radiation Pressure In **Relativistic Shock Waves** Upstream Downstream

- 1. Shock formation
- 2. Excitation of electromagnetic (light) waves
- 3. Electrostatic field (wakefield) excitation by the light
- 4. Acceleration of particles by the wakefield

Two governing parameters

 a_0 : normalized wave amplitud ω_p/ω_L : frequency ratio between plasma and light

Hoshino 2008 ApJ, 1D PIC, shock downstream system

Pulse like structures

Nonthermal electron acceleration by turbulent wakefield

- Assuming large amplitude light waves propagating in a plasma,
- Independent of light amplitude ~ a ullet
- Independent of plasma density ~ ω_p/ω_L \bullet
- Independent of pulse shape lacksquare
- Universal production of power law spectra lacksquarewith an index of ~ -2
- Cyclotron and synchrotron emission free.

Kuramitsu + 2008 ApJL, 2D PIC, shock upstream system

Nonthermal electron acceleration by turbulent wakefield

- Assuming large amplitude light waves propagating in a plasma,
- Independent of light amplitude $\sim a$ lacksquare
- Independent of plasma density ~ ω_p/ω_L \bullet
- Independent of pulse shape lacksquare
- Universal production of power law spectra \bullet with an index of ~ -2
- Cyclotron and synchrotron emission free.

It is impossible to observe this in the universe.

Model experiments of cosmic ray acceleration in laboratories (1)

- Astrophysical situation to be modeled is
- 1. a large amplitude light pulse (a > 1)

➡ Gekko PW (100 J, 700 fs, *a*₀ ~ 1.9)

2. propagating in a plasma.

Hollow cylinder implosion with Gekko XII

- Distribution functions of accelerated electrons are measured with electron spectrometer (ESM).
- Power law spectra independent of plasma density.

Relativistic ion acceleration

Controlled injection of energetic protons into the wakes

Isayama, Kuramitsu + 2021 PoP

- Graphene ion acceleration as the first stage
- Wakefield acceleration in the form target as the second stage
- Relativistic ion detectors
- Wakefield imaging with nonlinear Thomson scattering
- Machine learning on the detector

Frontiers

- Relativistic laboratory astrophysics
 - Energy Frontier
 - Relativistic ion acceleration
 - Relativistic ion detector
- Data science and Informatics
- Laser nuclear physics

- Extreme light field and plasmas
 - Induced Compton scattering from high brightness temperature radiation (13-5 Shuta Tanaka)
 - Tomson scattering of intense light from nonlinear plasmas (11-9 Kentaro Sakai)

Energy frontier in laser-driven ion acceleration with large-area suspended graphene with the aid of machine learning

Practical problems on ion acceleration experiment at relatively small laser facility

- radioactive contamination
- limited space and floor strength
- limited man power ... •

Need to suppress radiation from laser-matter interactions

These are also the case for medical applications

Large-area suspended graphene (LSG)

within the layer

Reasonable

Khasanah +Kuramitsu HPL 2017

1200 1600 2000 2400 2800

- 800 nm, 30 fs, 10J, 0.1 Hz, F/1.35, 5e21 W/cm²
- Without plasma mirror
- Oblique incidence (10 and 45 degrees)
- Targets
 - 2, 4, and 8 layer LSGs

(a) Laser and target

J-KAREN experiments

Best focus relativistic laser intensities

Thomson parabola spectrometer with 8- \bullet layer LSGs

(a) 1.06 e21 Wcm⁻² (b) 2.86 e21 Wcm⁻² (c) 4.83 e21 Wcm⁻²

- ~15 MeV protons and ~ 60 MeV carbons
- Without plasma mirror

Kuramitsu+ Sci. Rep. 2022

Irradiating the thinnest target by the highest intenstiv laser without plasma mirror to demonstrate robustness of LSG \rightarrow Not optimized yet!

LSG optimization to J-KAREN laser J-KAREN optimization to LSG

CR-39 stack To resolve ion energy using CR-39

- amounts of microscope images.
- ~10 CR-39 in 1 stack, ~10,000 microscope images in 1 CR-39 sheet
- <u>Millions of images should be analyzed in 1 experiment series.</u>

• To obtain ion spectra with CR-39 stack, it is required to find etch pits in large

Minami + submitted

Automation of ion pit analyses with machine learning (ML)

Taguchi + submitted

ML (ExtraTreesClassifier)

- HIMAC data
- Training data from HIMAC
- More than 5000 microscope images
- About 10⁵ pit detection
- Precision: 98%
- Recall: 98%
- LFEX data
- Training data from LFEX
- More than 17000 microscope images
- About 10⁵ pit detection
- Cropping margin: 3 pixels
- Precision: 95%
- Recall: 76%

CNN (VGG16)

- LFEX data
- Training data from HIMAC lacksquare
- All the ion pits are detected.

- LFEX data
- Training data from LFEX
- Cropping margin: 5 pixels
- Precision: 95%
- Recall: 83%

Kuramitsu + to be submitted

Summary 1

- We are exploring relativistic laboratory astrophysics aiming at relativistic ion acceleration relevant to cosmic rays.
- We have developed large-area suspended graphene as targets for laser-driven ion acceleration.
- We optimize the ion acceleration in two ways, LSG to laser and laser to LSG, and both successfully produce energetic protons and carbons.
- 132 MeV protons are accelerated with long (1.5 ps) and lower intensity laser (~10¹⁹ Wcm⁻²) and identified with machine-aided ion pit analyses.

Y. Kuramitsu^{1, 2*}, T. Minami¹, T. Taguchi¹, F. Nikaido¹, S. Soichiro¹, N. Tamaki¹, K. Sakai¹, K. Oda¹, K. Kuramoto¹, K. Ibano¹, S. Hamaguchi¹, Y. Abe^{1, 2}, A. Morace², A. Yogo², Y. Arikawa², C.S. Jao^{3,4}, Y.C. Chen⁴, Y.L. Liu⁵, S. Isayama⁶, N. Saura⁷, S. Benkadda⁷, M. Kanasaki⁸, Y. Fukuda⁹, T. Hayakawa⁹, C.M. Chu¹⁰, K.T. Wu¹⁰, S.H. Chen¹⁰, A. Tokiyasu¹¹, H. Kohri¹², K. H. Sudhan¹³, N. Ohnishi¹³, T. Pikuz¹⁴, S. Kodaira¹⁵, and W.Y. Woon¹⁰

¹ Graduate School of Engineering, Osaka University, Suita, Japan ² Institute of Laser Engineering, Osaka University, Suita, Japan ³ Institute of Space Science and Engineering, National Central University, Taoyuan, Taiwan ⁴ Department of Physics, National Cheng Kung University, Tainan, Taiwan ⁵ Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan, Taiwan ⁶ Department of Earth System Science and Technology, Kyushu University, Kasuga, Japan ⁷ Aix-Marseille université CNRS PIIM, UMR 7345, Marseille, France ⁸ Graduate School of Maritime Sciences, Kobe University, Kobe, Japan ⁹ Kansai Photon Science Institute, QST, Kizu, Japan ¹⁰ Department of Physics, National Central University, Taoyuan, Taiwan ¹¹ Research Center for Electron Photon Science, Tohoku University, Japan ¹² Research Center for Nuclear Physics, Osaka University, Japan ¹³ Graduate School of Engineering, Tohoku University, Sendai, Japan ¹⁴ Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan ¹⁵ National Institute of Radiological Sciences, QST, Chiba, Japan

Core-to-Core Program

This research is supported by the Ministry of Science and Technology, Taiwan under Grant No. MOST-103 -2112 - M-008-001-MY2, MOST 104-2911-I-008-504, and MOST 105-2112-M-008 -003 -MY3; JSPS KAKENHI Grant Number 19H00668, 19K21865, JPJSBP120203206, 20KK0064, 22H01195; a grant for the JSPS Core-to-Core Program "Data Driven Plasma Science"

