

Updates on EIC Projects

TIDC Annual Meeting Novembre 25, 2023

Po-Ju Lin National Central University

Study Hadron Substructure by Collider

2

Study Hadron Substructure by Collider

A great insight of the parton distribution in proton has been provided by the e[±]p collider HERA!

The Electron Ion Collider

First - eA collider

- High luminosity ep collider
- Polarized target collider
- For e-N collision at EIC:
 - Polarized beams: e, p, d/³He
 - e beam 5 18 GeV
 - Luminosity $L_{ep} \sim 10^{33-34} \text{ cm}^{-2} \text{s}^{-1}$
 - 30 140 GeV variable CoM
- For e-A collision at EIC:
 - Wide range of nuclei
 - Luminosity per nucleon same as e-p
 - Variable CoM energy

The Electron Ion Collider

EIC High Level Project Schedule

The 1st Detector Collaboration: ePIC

> The ECCE and ATHENA Collaborations were merged.

The 1st Detector Collaboration: ePIC

Auxiliary detectors needed to tag particles with very small scattering angles both in the outgoing lepton and hadron beam direction.

Hadrons Electrons 3pR Detector D1EF_5 Q2EF_5 Exit window Collimate Magne um. detectors BlpF Forward spectrometer ZDC (in B0) 0.0 B2ApF Off-momentum detectors Q3ApF Q3BpF Roman Pot Off-momen um detectors 2 -0.5-40-2020 40 n z (m)

Far forward and backward detectors provide vital information for the reaction kinematics of the colliding systems.

Far-Forward Detectors

Far-Forward Detectors

Zero Degree Calorimeter (ZDC)

A calorimeter for measuring photons and neutrons. ZDC sits at about 30m from the interaction point.

Physics Related to ZDC

incoherent

It I (Ge V2)

coherent

1 < Q² < 10 GeV < < 0.01

- > Spectator tagging in $e + d/^{3}He$ collisions
 - Neutron structure, spin structure
 - Proton by BO/Roman pots and neutron by ZDC

Intra-nuclear cascading increases with d (forward particle production)

Leads to evaporation of nucleons from excited nucleus (very forward)

- \succ *e* + *A* collision at small angle
 - Determination of excited nucleus breakup

d pol.

Veto with evaporated neutrons and photons from de-excitation

High-energy process

Forward detection

- Collision geometry characterization in e + A collisions
 - Correlated to neutron multiplicity
 - Study of nuclear matter effect

Meson structure via Sullivan Process

- Measure neutron or $\Lambda(\rightarrow n + 2\gamma)$ in far-forward region
 - Structure of π , K, etc.

> And more...

Performance Requirements

epic 🐨

> Challenge: large energy coverage, detailed reconstruction of photon and neutron showers

Preliminary ZDC Design

- A composition of four different calorimeter configurations

*note: space for readout may extend the longitudinal length.

Design Concept: Full Shower Reconstruction

Meas. of hadron shower (Si for rad-hard.)

Meas. of hadron energy

Transverse granularity

<u>Crystal</u>

Scintillator 10cm x 10cm

Monte Carlo Implementation

≻ History…

- Athena: DD4hep, ECCE: Fun4All
- EPIC has chosen DD4hep for MC development update to ECCE/EPICstyle required
- Fixed bugs in the initial implementation

Monte Carlo Studies

- > Energy resolution was much worse than the one obtained in Fun4All by Dr. Shima Shimizu
 - Some changes in ZDC setup
 - Energy dependent calibration

200

250

300 Energy (GeV)

Mean (E^{reco}/E^N)

0.95

0.9

0.85

0.8

0.75^L

ອີ 1.02 ຟ

Mean (E_{Reco}/

0.98

0.96

0.94

0.92

0.9

0.88

0.86

Energy Resolution

ZDC Monte Carlo Study

9cm

- ZDC simulation updated
 - Upstream modules with smaller lateral size to fit between beam pipes
 - Overall length about 183 cm, within 2m limit
 - More cost effective, Pb-Silicon module removed
 - HCAL resolution improved
 - Base design, meets the resolution requirement

ZDC ECAL Prototype with LYSO

	Light Yeild		Cost		Note
PbWO ₄	Low		Less expansive		
LYSO	High (>100 x PbWO ₄)		High		Good timing resolution
SciGlass	Better than PbWO ₄		Not high		Mature (contact CUA?)
Sx8 LYSO	SiPM array	Bx8 LYSO crystal array		LYSO calorime prototype	ter

Aim to have a beam test at Tohoku University in February 2024 to compare the performance between the LYSO and PbWO₄ crystals for 900 MeV positrons

ZDC Monte Carlo Study

For the beam test in February 2024

Various optical properties in the GEANT4 simulation are being studied.
Future plan: optimizing the ZDC ECAL (homogeneous / sampling / ...)

TOF Prerformance Study

Started to study the impact of AC-LGAD (Low Gain Avalanche Detectors) on the momentum resolution at ePIC.
Goal: optimize the pad size of the AC-LGAD sensors

Simulation with DD4hep and reconstruction
1000 π^- using particle gun

Meetings in Taiwan

NCU workshop on EIC physics and detectors

Organization Cmmittee: Jen-Chieh Peng(UIUC/NCU), Wen-Chen Chang(AS),

Wen-Chen Chang(AS), Chia-Ming Kuo(NCU)

(A) AL TH ANT (D) 🐨 🔛 1/AC COMP

Chung Wen Kao (CYCU) Chia Ming Kuo (NCU) Hsiang-Nan Li (AS) C.-J. David Lin (NYCU) Rong-Shyang Lu (NTU) Yi Yang (NCKU) Dr. Rolf Ent / Jefferson Lab, USA Prof. Jamal Jalilian-Marian / CUNY, USA Prof. Zhongbo Kang / UCLA, USA Dr. Ralf Seidl / RIKEN, Japan

Info registration & contact

https://reurl.cc/4Q8RKv Email: tidcephys.ntu.edu.tw Tel: +886-2-33668648

22

Sponsors

August 28-30, 2023

TIDC Autumn School

On Electron-Ion Collider (EIC)

Department of Physics, National Taiwan University

Registration Deadline June15, 2023

Academia Sinica Center for Theory and Computation, NTHU National Yang Ming Chiao Tung University

Initial Stage 2025

Thank you very much for the excellent organization of IS2023 in Copenhagen!!

Looking forward to meeting all of you in Taipei for IS2025!

Plan to bid for the EIC UG meeting for 2027

- EIC will provide insights into interesting physics topics, not limited to hadron structure studies.
- > Involvement with different projects has been initiated:
 - ZDC simulation
 - Crystal / EMCAL of ZDC
 - TOF performance study
- > Exploring other possibilities that groups from Taiwan can contribute