

HGCAL Module Assembly Center in Taiwan

TIDC annual Meeting — November 25, 2023

You-Ying Li on behalf of Taiwan MAC

National Taiwan University

HCGAL overview

- The HGCAL detector, which is CMS Phase II upgrade, replaces the ECAL and HCAL endcap region to be against the high pileup environment of up to 200 interaction points.
- * A sampling detector with three parts:
 - CE-E : 26 layers of silicon modules with Cu/Pb absorbers.
 - CE-H : 21 layers of silicon modules with Cu and thick steel absorbers.
 - Scintillator : SiPM to tiles with Cu and thick steel absorbers.
- The detector provides precise 5D information (position, time and energy) for particle showers.

Key parameter:

- Cover 1.5 < |η| < 3.0</p>
- Full system maintained at -30°C
- 6 M channels with 27 K silicon modules
- Silicon cells of size (≈0.5/1.1 cm²)

CMS p-p collisions at 7 TeV per beam 1 MeV-neutron equivalent fluence in Silicon at 3000 fb⁻¹ 1e+18 1e+17 250 200 e+15 шо 150 Н e+13 100 1e+12 50 1e+11 1e+10 **η** = 1.5 3m CE-E ~2m n = 3.0

1/20

Taiwan MAC

8 inch Silicon Module

Taiwan MAC

Taiwan HGCAL MAC overview

- * The HGCAL MAC in Taiwan are established in 2018.
- ★ Taiwan MAC (NTU+NCU) is one of 6 HGCAL MACs (NTU+NCU Taiwan, IHEP China, TIFR India, UCSB US, TTU US, CMU US)
- * Three PIs (Stathes Paganis, Rong-Shyang Liu, Chia-Ming Kuo) and more than seven postdoc and assistants
- * Hosts main module assembly and shipping and contact Ploteck for hexaboard fabrication.
- * Around 5000 pieces of silicon modules need to be made in two years.

Clean room for Taiwan MAC

Taiwan MAC

MAC : From material to module

MAC : From material to module

Gantry overview

Camera for locating

Pick and place by vacuum

Assembly jigs designed at NTU and fabricated at AS

Taiwan MAC

Module assembly step

Taiwan MAC

Module assembly step

Taiwan MAC

Module assembly method

November 25 — TIDC annual meeting

Araldite

High radiation tolerance

Hybrid

Taiwan MAC

Inefficiency (I day for glue and dry)

Transfer tape

- Transfer tape with laser cutting by company
- Efficiency (20 mins)
- Low radiation tolerance

Compromising method to combine

9/20

- araldite and transfer tape
- Medium radiation tolerance
- Efficiency (20 mins)
- Under development

QGP QC

Alignment

OGP provides optical high-precision (~µm)

locating and image processing for modules to measure modules' quality indicators.

- * Alignment information such as offset between baseplate/sensor/HB and flatness.
- Measurement result visualization by python.

Flatness

10/20

Taiwan MAC

MAR

Wire bonding

Aluminum wire

- Connect the silicon sensor to pads on the hexaboard through aluminum wire for signal readout and HV/GND.
- I 5 mins can finish a module with 432 bond pads.
- Use OGP to snapshot bond pads and sensor to check the failure of wire bonding.
- Consider vision recognition (machine learning by ourselves) to identify the failure of wire bonding in future.

Taiwan MAC

Sensor pad

Electronic test setup

Dry air tube

Keithley 2410 (HV power)

Teststand

Module

HV (up to 300 V) as bias voltage is applied to tested module to achieve full depletion.

Power supplier

(Analog/Digital)

12/20

- The test stand is placed in the light-shielding box with injected dry air to avoid high leakage current; vacuum system is applied to hold the module position for stability.
- Hexacontroller controls DAQ and HGCROC through i2c.
- * Python module controls HV power supplier.

HexaController

(with FPGA)

Electronic functionality

Taiwan MAC

Encapsulation

- Wire encapsulation is performed using glue coverage to avoid dust to touch wires and cause short.
- Programmable miniGantry and air jets are automatically controlled for syringe position and the timing of glue squeezing.
- * CCD camera scans all step holes to check the status of like bubble or glue overflow.

Taiwan MAC

Electronic functionality

Thermal cycle test setup

- * Test of module structure damage or electronic functionality glitch during temperature raising/lowering.
- Tested modules mounted on copper plates to simulate modules on cooling plates through dedicated screws.
- HV cables are also extended into the chamber to test
 IV curve.

Temperature/Humidity sensor

Taiwan MAC

Macbook

HITACHI chamber

Thermal cycle test

Taiwan MAC

Schedule

Pre-series HGCAL schematic schedule V25 October 2023 (FE, Cassettes) Pre-Prod 5% 2023 2024 2026 2027 2025 Prod -> 50% J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O Prod -> 100% LD DCP: 402 days ON CRITICAL PATH HD Sensors DCP: 155 days HGCROC ...testing ER10% HexaBoards DCP: 220 days (LD) / 146 days (HD) VFE DCP: 146 days Silicon Modules pre-prod 5.5 months, prod 17 months prod 2+21 months DCP: 206 days Scintillator prod 8.5 months DCP: 285 days DCP: 145 days SiPMs TileBoards DCP: 172 days prod 9 months DCP: 424 days TileModules DCP: 128 days DCP: 248 days pre-prod 3 months, prod 12 months DCP: 112 days (ER) 339 days (final test) **ECONs** ER 40% rest of prod + testing DCP: 120 days FE (HD wagons, CM, SiPM MB) Cassettes DCP: 120 days DCP: 143 days pre-prod 5 months prod 13 months DCP: 116 days Mechanics

HGCAL2 HGCAL2

We are here Production will start in April 2024

Taiwan MAC

Cold testst 30, 2023

Stacking and integration

November 25 — TIDC annual meeting

HGCAL: Production status

HGCAL1

Future plan

- * Develop a user friendly GUI system for our electronic test through python instead of console mode.
- * Build a multi-mode test stand that synchronizes electronic test, IV measurement and thermal cycle together
 - → DAQ system, Power supplier (normal and HV), ColdBox,
 - Chiller, Dryair system, PLC
 - \rightarrow There can be 24 hexaboards within the coldbox and 3

hexaboards for data taking at the same time

* Optimize the jigs' layout and assembly procedure to

maximize our MAC production rate (~ 12 pieces per day).

Taiwan MAC

Summary

- * Overall procedure from materials to modules in Taiwan MAC gradually becomes mature.
- * Some important steps like multi-mode test stand or assembly by using hybrid method is still under development.
- * It's expected that the Taiwan HGCAL MAC will transform into production stage.

