

HGCAL DPG - Raw Data Handling

Calibration algorithms, Alpaka algorithms, and HGCAL DQM

Yu-Wei Kao National Taiwan University

TIDC workshop

25. November. 2023

Agenda

- Reconstruction in High Granularity Calorimeter (HGCAL)
- Raw data handling in the HGCAL Detector Performance Group
 - Level-0 calibration algorithms
 - RecHitProducer with heterogeneous computing
 - Initialization of HGCAL Data Quality Monitoring
- Summary

Brief Introduction

High Granularity Calorimeter

- Forward imaging calorimeter
- Electromagnetic (CEE): 26 layers
- Hadronic (CEH): 21 layers

HGCAL Reconstruction

CLUstering of Energy (CLUE) algorithm

- Developed based on Imaging Algorithm
- Input hits and output 2D layer clusters
- Energy density based
- Reduce dimensionality of the problem (10⁵ hits to 10⁴ layer clusters)

"The Iterative CLustering" (TICL) Framework

- Input 2D layer clusters and output 3D objects / showers (TICL candidates)
- Iterative algorithm
- Electromagnetic showers are easier to reconstruct
- Hadronic showers are reconstructed after EM showers

Reference: The HGCAL website and Marco Rovere's slides

Skeleton of iteration

Five-step procedure of an iteration

- Filter and mask layer clusters
- Define seeding region
- Pattern recognition
- Link the recognized patterns
- Cleaning and classification

TICL Framework

Tracksters

Raw Data Handling Group

HGCAL Raw Data Handling

Phase-2 upgrade of new end-cap calorimeter

- 6 million channels $\rightarrow O(700k)$ hits per event
- Heterogeneous computing
- Highly parallelization algorithms

HGCAL Raw Data Handling

- 2022 October working group built
- 2023 Aug/Sep test-beam events
- Goal: RAW → DIGI → RECO → DQM / Nano
 - Level-0 calibration algorithms are developed
 - Algorithms are ported to Alpaka EDProducer for heterogeneous computing
 - HGCAL DQM service is established from scratch for the test beam activities

Data flow in CMSSW

Data flow in CMSSW

Data flow in CMSSW

Calibration Algorithms

HGCAL local reconstruction

What need to be done for local reconstruction?

- The front-ends (FE) provides
 - Energy for the current bunch crossing (BX)
 - Energy for the previous bunch crossing (BX-1)
 - Time measurements for BX
- Necessary calibrations
 - Pedestal and common mode subtraction
 - Linearization
 - Energy setting (charge \rightarrow MIPs \rightarrow GeV)
- Some of these procedures depend on the sensor type (Silicon and SiPM-on-tile)
- Some depend on the electronics configuration (characterization mode, etc.)

HGCAL DPG / raw data handling

HGCAL local reconstruction

Unpacker drop non-connected/bad channels assign DetId

What need to be done for local reconstruction?

DIGIs in 128-bit words Several ECOND packets ToA, TcTp, ADC (BX-1), ADC/ToT identified with DetId

Raw data

RecHit Producer apply level-0 corrections

assign RecHit status flags assign RecHit correction level

Rechit collection

Energy in fC / MIP / GeV Time in ns Data quality and correction-level flags identified with DetId

HGCAL prompt calibration loop

Pedestal estimationCommon mode studiesBX-1 correctionCharge non-linearity studySiPM non-linearity studyMIP distribution fit

EM scale studies

ToA time slew (= time walk)

Time zero-offset

TDC non-linearity

Energy calibration

	Pedestals - 1 param per channel per gain
	Common mode correction - \geq 1 param per ROC per gain
	BX-1 correction - 1 param per ROC per gain
	Gain linearization - 2 constants per ROC per gain
	SiPM linearization - functional form per tile
	ADC to MIP - 1 param per channel
—	EM scale - ey, $\pi^0 \rightarrow \gamma\gamma$, J/ $\psi \rightarrow \mu\mu$, Z \rightarrow ee

Time calibration

ToA

Time slew - 1 param per ROC per gain
Time zero-offset - 1 param per 60 degree per run
integral non-linearity (INL) - 2 const. per ROC per gain

Legend in the RECO chain

Raw data EDProducer CMSSW collection Alpaka kernel functions Calibration data/method

HGCAL DPG / raw data handling

HGCAL local reconstruction

ToA time slew (= time walk) **Rechit collection** Energy in fC / MIP / GeV Time zero-offset

Time in ns Data quality and correction-level flags identified with DetId

Raw data

Unpacker

drop non-connected/bad channels

assign Detld

DIGIs

in 128-bit words

Several ECOND packets

ToA, TcTp, ADC (BX-1), ADC/ToT

identified with DetId

RecHit Producer

apply level-0 corrections

assign RecHit status flags

assign RecHit correction level

HGCAL prompt calibration loop

	Energy calibration
Pedestal estimation	Pedestals - 1 param per channel per gain
Common mode studies	Common mode correction - \geq 1 param per ROC per gain
BX-1 correction	BX-1 correction - 1 param per ROC per gain
Charge non-linearity study	Gain linearization - 2 constants per ROC per gain
SiPM non-linearity study	SiPM linearization - functional form per tile
MIP distribution fit	ADC to MIP - 1 param per channel
EM scale studies	EM scale - ey, $\pi^0 \rightarrow \gamma\gamma$, J/ $\psi \rightarrow \mu\mu$, Z \rightarrow ee

Time calibration

Time slew - 1 param per ROC per gain
Time zero-offset - 1 param per 60 degree per run
oA integral non-linearity (INL) - 2 const. per ROC per gain

What need to be done for local reconstruction?

Raw data EDProducer **CMSSW** collection Alpaka kernel functions Calibration data/method

Legend in the RECO chain

HGCAL DPG / raw data handling

TDC non-linearity

Running statistics for subtractions

Considerations	Table: comparison of memory consumption		
• Dramant a all bratian \otimes OMO DC		Total heap usage (kB)	
 Prompt calibration @ CIVIS P5 	Single TH2D	84.7	
 Memory consumption 	Running statistics	2.95	

Running statistics

- Record only statistics and update them event by event
- Evaluate pedestal and common-mode parameters
- Implemented in cms-hgcal/cmssw

Mean:
$$\bar{x}_{i+1} = \frac{n}{n+1}\bar{x}_i + \frac{1}{n+1}x_{i+1}$$

Variance: $V_{i+1} = \frac{n}{n+1}V_i + \frac{n}{n+1}\bar{x}_i^2 - \bar{x}_{i+1}^2 + \frac{1}{n+1}x_{i+1}^2$

Pedestal subtraction

Pedestal

- Level of electronic response when there is no signal
- Use mean value as an estimate for prompt evaluation
- Sample: 2022 test beam data

Beam run ADC after subtraction of mean pedestal derived from pedestal run

Common Mode noise subtraction (1/4)

Common mode noise

- Caused by fluctuations from bias voltage or low voltage
- Bias voltage (BV or HV): voltage applied to sensors
- Low voltage (LV): power supply of chips

Simplified from Geliang Liu's sketch

Common Mode noise subtraction (2/4)

Common mode noise

- Caused by fluctuations from bias voltage or low voltage
- Correlation exists between a normal channel and CM channel because of the noise

Common Mode noise subtraction (3/4)

Common mode noise

- Caused by fluctuations from bias voltage or low voltage
- CM noise is removed by decorrelating the normal channel and the CM channel

HGCAL DPG / raw data handling

25. Nov. 2023

Common Mode noise subtraction (4/4)

Common mode noise

- Caused by fluctuations from bias voltage or low voltage
- Comparison before and after the CM subtraction
- Other sophisticated methods for CM noise removal are under studied by experts

Heterogeneous Computing

Heterogeneous computing

Phase-2 upgrade of new end-cap calorimeter

- 6 million channels $\rightarrow O(700k)$ hits per event
- Heterogeneous computing \rightarrow Use the Alpaka library!

Heterogeneous computing

Phase-2 upgrade of new end-cap calorimeter

- 6 million channels $\rightarrow O(700k)$ hits per event
- Heterogeneous computing \rightarrow Use the Alpaka library!

What is Alpaka?

- Abstraction Library for Parallel Kernel Acceleration
- "Aim to provide performance portability across accelerators

through the abstraction of the underlying levels of parallelism"

Data format is based on structure of arrays (SoAs)

Heterogeneous computing

Phase-2 upgrade of new end-cap calorimeter

- 6 million channels $\rightarrow O(700k)$ hits per event
- Heterogeneous computing \rightarrow Use the Alpaka library!

What is Alpaka?

- Abstraction Library for Parallel Kernel Acceleration
- "Aim to provide **performance portability** across accelerators

through the abstraction of the underlying levels of parallelism"

Data format is based on structure of arrays (SoAs)

Alpaka modules in CMSSW "GPU framework"

- Alpaka ESProducer → passing conditions
- Alpaka EDProducer → produce RecHits

Data transfer & GPU Kernels

CMSSW Setup

CMSSW

Based on 13_2_0_pre2 (link)

Alpaka ESProducer

Calibration parameters in SoA

Alpaka EDProducer (RecHitProducer)

- Input: Digis in SoA layout
- Output: RecHits in SoA layout

DataFormats/HGCalRecHit/ |-- BuildFile.xml |-- interface | |-- HGCalRecHitHostCollection.h | |-- HGCalRecHitSoA.h | `-- alpaka | `-- HGCalRecHitDeviceCollection.h `-- src |-- alpaka | |-- classes_cuda.h | |-- classes_cuda_def.xml | |-- classes_rocm.h | `-- classes_rocm.def.xml | -- classes.h `-- classes.def.xml

Alpaka related code for HGCAL raw data handling

HGCAL DPG / raw data handling

25. Nov. 2023

A C++ structure resides in the SoA scalar

Contributor of the dense map: Yulun Miao

- Introduce a "dense map" for the indices of calibration parameters
- Size of portable collection is determined from config parameters (e.g. max sizes of capture blocks, econds, etc.)

Source: RecoLocalCalo/HGCalRecAlgos/interface/HGCalCalibrationParameterProvider.h

Building blocks to pass parameters on GPUs

Contributor of the idea: Andrea Bocci

Alpaka ESProducer

- SoA
- Portable collections
- ESProducer
- Declaration to framework
- Load in RecHit Producer
- Pass to calibration kernel

Implementation

- <u>4da2d3b</u> Add SoA and portable collections for calib parameters
- <u>3f87f22</u> Add an alpaka ESProducer & pass calibration parameters to kernels

Considerations of SoA for calibration parameters

- Calibration parameters → SoA column of float
- Map between electronics id and calibration parameters \rightarrow SoA scalar for a c++ structure

11	<pre>#include "RecoLocalCalo/HGCalRecAlgos/interface/HGCalCalibrationParameterProvider</pre>
12	
13	<pre>namespace hgcalrechit {</pre>
14	
15	// Generate structure of arrays (SoA) layout with RecHit dataformat
16 🗸	GENERATE_SOA_LAYOUT(HGCalCalibrationParameterSoALayout,
17	SOA_SCALAR(HGCalCalibrationParameterProviderConfig, config)
18	SOA_COLUMN(float, pedestal),
19	<pre>SOA_COLUMN(float, CM_slope),</pre>
20	<pre>SOA_COLUMN(float, CM_offset),</pre>
21	SOA_COLUMN(float, BXm1_kappa)
22)
23	using HGCalCalibParamSoA = HGCalCalibrationParameterSoALayout<>;
24	
25	l // nomennene breelreebit

CPU vs. GPU

Machines

- CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz (10 cores, 20 threads)
- GPU: Tesla P100-PCIE-16GB (3584 CUDA cores)

Sample & algorithms

- Data from lab test with 200k hits
- Pedestal & common-mode noise subtractions

HGCAL DPG / raw data handling

Performance with different number of hits

Contributor: Jeremi Niedziela

CPU vs. GPU

- Running the same algorithms with different number of hits
- Comments
 - ▶ GPU is rather flat in the beginning
 → dominated by copying data
 between CPU and GPU
 - At around 10k hits, GPU starts to outperform CPU
 - At a few million hits, GPU shows an order of magnitude faster!

HGCAL DQM

Beginning of the story

"It will be great if we can display the wafer map on DQM GUI."

Beginning of the story

"It will be great if we can display the wafer map on DQM GUI."

"Okay, let me try."

Cells in hexagonal shape or irregular polygons

and the second second

L1T - 51.6% - 2h 53' 22" ago

L1TEMU - 100.0% - 2h 53' 21" ago

L1TEMU: L1 Emulator vs Data Report Summary Map

PixelPhase1 - No DAQ - 2h 53' 15" ago RPC - 52.3% - 2h 53' 8" ago

RPC Report Summary Map

Seeking for a feasible way

Reference: hexagonal bins

Possible approaches using ROOT

1. TH2Poly example from ROOT forum

Seeking for a feasible way

Reference: HGCal Geant4 studies

Possible approaches using ROOT

2. TGraph example from a python script

HGCAL DPG / raw data handling

Seeking for a feasible way

Possible approaches using ROOT

Reference: HGCal sensor analysis

3. TPolyLine example from an independent C++ framework

HGCAL DPG / raw data handling

Which is more suitable?

Considerations of implementation

- Can be implemented in CMSSW modules (C++)
- Can fit in DQM monitor elements (TH1, TH2, etc.)

Which is more suitable?

Considerations of implementation

- Can be implemented in CMSSW modules (C++)
- Can fit in DQM monitor elements (TH1, TH2, etc.)

→ TH2Poly is a natural choice among them

Which is more suitable?

Considerations of implementation

- Can be implemented in CMSSW modules (C++)
- Can fit in DQM monitor elements (TH1, TH2, etc.)

→ TH2Poly is a natural choice among them

→ Generate polygonal bins from an external python script

Embark on the journey

However...

- TH2Poly has not yet been in the DQM monitor elements in CMSSW
- The CMS DQM GUI is an external package...

Embark on the journey

DQM monitor element of Th2poly #14

- Commits 5

<u>ໃງ Open ywkao wants to merge 5 commits into cms-DQM:index128</u> from ywkao:th2poly [🖵

E Checks 0

ywkao commented on Jun 8

This PR introduces a new type of DQM MonitorElement, TH2Poly, for HGCal DQM in the future. This feature allows the display of polygonal histograms on the CMS DQM GUI. As a demonstration, a wafer map can be displayed like the screenshot here [1].

(±) Files changed (11)

TH2Poly is a 2D histogram class inherited from TH2. Polygonal bins, defined by TGraph, can be loaded using the AddBin() method. After setting up the polygonal bins, a TH2Poly object can store information through Fill() or SetBinContent().

A workflow for creating polygonal histograms looks like this: DQM Service -> DQM EDAnalyzer -> CMS DQM GUI

An implementation of TH2Poly in DQM Service and MonitorElement is necessary to display the polygonal histograms. It involves updates on two repositories: dqmgui_prod and cmssw. The idea is implemented in a user branch of cmssw [2]. From the branch, monitor elements of the TH2Poly object can be stored in a DQM root file [3]. We will prepare another pull request to cmssw soon.

A related issue to this PR can be found here, #13

@pfs, @hqucms

[1] https://ykao.web.cern.ch/ykao/raw_data_handling/hgcal_dqm_gui/screenshot_demo_th2poly_wafermap.png [2] ywkao/cmssw@ d9e70fc [3] A DQM root file: /afs/cern.ch/work/y/ykao/public/example_HGCAL_DQM/DQM_V0001_HGCAL_R000123469.root

ments in CMSSW

Embark on the journey

DQM monitor element of Th2poly #14

<u>ໃງ Open ywkao wants to merge 5 commits into cms-DQM:index128</u> from ywkao:th2poly [🖵

오	Conversation	0
---	--------------	---

E -O- Commits 5

ywkao commented on Jun 8

This PR introduces a new type of DQM Mon display of polygonal histograms on the CMS here [1].

TH2Poly is a 2D histogram class inherited fi method. After setting up the polygonal bins

A workflow for creating polygonal histogran DQM Service -> DQM EDAnalyzer -> CMS [

An implementation of TH2Poly in DQM Serv involves updates on two repositories: dqmg the branch, monitor elements of the TH2Po to cmssw soon.

A related issue to this PR can be found here

@pfs, @hqucms

[1] https://ykao.web.cern.ch/ykao/raw_data_ [2] ywkao/cmssw@ d9e70fc [3] A DQM root file: /afs/cern.ch/work/y/yka

1 Open ywkao wants to merge 3 commits into cms-sw:master from ywkao:hgcal-dqm_with_th2poly-13_2_X

-O- Commits 3 E Checks 0

(±) Files changed **(5)**

ywkao commented on Jun 12

PR description:

This PR introduces a new type of DQM MonitorElement, TH2Poly, for HGCal DQM in the future. This feature allows a display of polygonal histograms on the CMS DQM GUI. As a demonstration, a wafer map can be displayed like the screenshot here [1].

TH2Poly is a 2D histogram class inherited from TH2. Polygonal bins, defined by TGraph, can be loaded using the AddBin() method. After setting up the polygonal bins, a TH2Poly object can store information through Fill() or SetBinContent().

A workflow for creating polygonal histograms looks like this: DQM Service -> DQM EDAnalyzer -> CMS DQM GUI

An implementation of TH2Poly in DQM Service and MonitorElement is necessary to display the polygonal histograms. It involves updates on two repositories: cmssw and dqmgui_prod. A pull request is created in the dqmgui_prod repository [2] with a relevant issue reported in this link [3], which is about setting up a CMS DQM GUI with the new feature.

PR validation:

The workflow and the implementation have been tested: (a) From this feature branch, monitor elements of TH2Poly can be stored in a DQM root file [4]. (b) The DQM root file can be uploaded to a CMS DQM GUI, which is built following the steps noted in this issue [3]. Polygonal maps can be displayed on the DQM GUI, as demonstrated in [1].

[1] https://ykao.web.cern.ch/ykao/raw_data_handling/hgcal_dqm_gui/screenshot_demo_th2poly_wafermap.png

- [2] cms-DQM/dqmgui_prod#14
- [3] cms-DQM/dqmgui_prod#13
- [4] A DQM root file containing demo polygonal maps:

/afs/cern.ch/work/y/ykao/public/example_HGCAL_DQM/DQM_V0001_HGCAL_R000123469.root

HGCAL DPG / raw data handling

Wafer maps in TH2Poly

Workflow of the wafer maps

- 1. Create polygonal cells using an external python script
- 2. Book wafer maps for data monitoring in DQM EDAnalyzer
- 3. Display plots on the DQM GUI

The start of the HGCAL DQM

The first hexagonal histograms on the CMS DQM GUI !

Celebration on the progress

Cosmetics on DQM wafer map

HGCAL DPG / raw data handling

25. Nov. 2023

DQM histograms for full wafers

DQM histograms for partial wafers

DQM GUI during the test beam activity

Service -✓ Workspace → ✓ Run # → Online Development: HGCAL . (None) . (None) . (None) . (Not recorded)

Run started, UTC time

LS #

Event #

y[cm]

CMS

Summary

Contributions

- Involved in the HGCAL raw data handling tasks with a realistic data processing chain established in a CMSSW branch in the past year. (RAW → DIGI → RECO → DQM / Nano)
- Implemented level-0 calibration algorithms in Alpaka modules for heterogeneous computing. GPU already shows an order of magnitude faster for the expected HGCAL multiplicity in the preliminary study.
- Initiated HGCAL DQM with polygonal DQM monitor elements implemented. A DQM GUI was built for the 2023 beam test activities.

Next steps of the raw data handling group

- More calibration algorithms for local reconstruction will be studied.
- Scale up from the wafer-level test to cassette-level test.

Acknowledgement

Advisors

Kai-Feng Chen and Stathes Paganis

HGCAL Calibration & Heterogeneous computing

 Andre Bocci, Andre Govinda Stahl Leiton, Eric Cano, Geliang Liu, Huilin Qu, Izaak Neutelings, Jeremi Niedziela, Pedro Silva, Yulun Miao

HGCAL DQM

 Arnaud Steen, Andre David, Chris Seez, Dimitra Tsionou, Eiko Shin-Shan Yu, Huilin Qu, Javier Fernandez, Marco Rovere, Pedro Silva, Pruthvi Suryadevara, Yulun Miao 19. Jun. 2023 HGCAL workshop BBQ event @ CERN Prevessin

Thank you!

Backup

Energy information

• Energy path

- conversion to charge $(A \rightarrow q)$
- subtract the baseline stochastic noise: pedestal (P)
- subtract fluctuations of common mode noise (q_{CM})
- subtract the leakage from the previous bunch (q_{0,-1})
- Conversion from A to charge is made using the information
 - ADC/TOT mode: extracted from the TcTp flags of the raw data
 - LSB and offset (OFF) set by configuration (4 constants per ROC per run)

 $q_0 = (LSB + 1/2) \cdot A + OFF$

• Corrected charge measurement

$$\begin{split} q &= (q_0 - P) + \beta \cdot (q_{CM} - P_{CM,0}) + \kappa \cdot \left[(q_{0,-1} - P) + \beta \cdot (q_{CM} - P_{CM,0}) \right] \\ &= q_0 - (1 + \kappa) \cdot P - \kappa \cdot q_{0,-1} + \beta \cdot (1 + \kappa) \cdot (q_{CM} - P_{CM,0}) \end{split}$$

Source: https://docs.google.com/document/d/1fSYI8ftHjVG0DwDt1xpZcBMKixobyeQnKA4T9hScEqg/edit#heading=h.10ts2c4n5i7j

Level-0 calibrations: main operations

larget	Dataset	Frequency	Notes
3/15% uncertainty in	standard L-1 triggers few times a year		MIP at 10 ADC counts
CE-E/CE-H cells			ZS threshold 0.5 MIP
0.3 LSB uncertainty	unsuppressed readout	see discussion	
in mean	in standard L-1 triggers	in text	
2%	charge injection data	infrequent	
	charge injection data	infrequent	
10%??	LED data	commissioning and startup	single p.e. peak
15 ps	random-clock events	infrequent	see Ref. [3]
15 ps	standard L-1 triggers	every run	
	<pre>/15% uncertainty in /15% uncertainty in CE-E/CE-H cells .3 LSB uncertainty n mean .% 0%?? 5 ps 5 ps 5 ps</pre>	argetDataset/15% uncertainty in CE-E/CE-H cellsstandard L-1 triggers.3 LSB uncertaintyunsuppressed readout in standard L-1 triggers.%charge injection data charge injection data.%charge injection data0%??LED data5 psrandom-clock events5 psstandard L-1 triggers	argetDatasetFrequency/15% uncertainty in CE-E/CE-H cellsstandard L-1 triggersfew times a year.3 LSB uncertaintyunsuppressed readout in standard L-1 triggerssee discussion in text.%charge injection datainfrequent0%?LED datacommissioning and startup5 psrandom-clock eventsinfrequent5 psstandard L-1 triggersevery run

Source: https://gitlab.cern.ch/tdr/notes/DN-20-002

- DPG is in the process of updating DN-20-002 to reflect latest discussions
- Pedestal and time zero-offset will be the most frequent
- Need special S-Link data for non-linearity of charge and SiPM and ToA time slew

Pedestal runs: usage of unsupressed events

- Need to choose events without zero suppression for evaluating pedestal
 - Standard level-1 trigger → operations are greatly eased if a flag is in ECON-D header
 - If there is no flag → need a special algorithm to look for unsuppressed events

Source: first page of from slides here

ТсТр

• Tc and Tp flags

- Added (MSB positions) to the 30 bits in order to remove some ambiguities which can occurs in the data path
- TOT-Complete, Tc: the second 10 bits packet corresponds to TOT, not ADC. It is applicable in lines 3 and 4 of the table
- TOT-In-Progress, Tp: A TOT occurred in a previous BX and the ADC value can be "corrupted" (saturation or undershoot).
 It is applicable for lines 1 and 2 and 4 of the table

					1	. <u> </u>		
	ADC (t-	-1)	ADC (t)	тот	ΤΟΑ	Cha	rge collection	Data type
1	>	(x		x (=0)	Q<	TOA_thr AN	Normal
2	,	K	x		x	Q <	TOT_thr AN	Normal
3	,	<		x	x	Q>	TOT_thr AN	Normal
4			x	х	x			"Characteriza tion"
	0	Тр	10b ADC-1		10b ADC		10b TOA	Case 1 and 2
	1	Тр	10b ADC-1		10b TOT		10b TOA	Case 3
-	Tc .	Тр	10b ADC		10b TOT		10b TOA	Case 4

Source: p.33 in HGCROC3_Spec_Working_Document_v2.0.pdf

Glossary

Abbreviation	Original words	Meaning
ADC	Analog-to-digital converter	Used as energy unit for digitized signal
TDC	Time-to-digital converter	Used as unit for timing information
LSB	Least significant bit	The smallest level that ADC or TDC can convert
тот	Time over threshold	A span of time when signal is over energy threshold
ТоА	Time of arrival	An instant of time when signal is over energy threshold
ТсТр	ToT-complete and ToT-in-progress	Flags for three time intervals of signals (before rising, over threshold, and after declining)

Instability of pedestal

Source: https://indico.cern.ch/event/1142454/contributions/4794019/attachments/2411882/4127370/20220322_BeamTest_GeliangLiu.pdf

25. Nov. 2023

Displaying wafer maps

• Prepare polygonal cells using pyRoot

- Define polygonal bins as TGraph objects in a root file
- Tool: https://github.com/ywkao/hexagonal_histograms

• Create wafer maps in DQM EDAnalyzer

- Monitor element of TH2Poly is necessary → PR on CMSSW is created (#41932)
- Declare TH2Poly monitor elements and load the polygonal bins
- Store the polygonal histograms in an output DQM root file
- A DQM module tested in a private cmssw branch: <u>PlaygroundDQMEDAnalyzer</u>

• Display on a CMS DQM GUI

- An online DQM GUI is built
 - Instructions on cms twiki, <u>DQMGuiForUsers#How</u>
 - Layout and rendering plugin for HGCAL system tests are set
 - Recognition of TH2Poly is implemented \rightarrow PR on dqmgui_prod is created (<u>#14</u>)
- Upload the DQM root file & monitor plots on the DQM GUI