

1

Hadron Structure Studies at the COMPASS Experiment

The 3rd EIC Asia Workshop National Cheng Kung University January 29, 2024

Po-Ju Lin Department of Physics, National Central University

Multi-dimensional Partonic Structures

Parellelism between TMDs and GPDs

4 chiral-even, 4 chiral-odd, 2 T-odd

COMPASS

Quark Spin

COMPASS Experiment

Versatile facility with hadron $(\pi^{\pm}, K^{\pm}, p \dots)$ & lepton (polarized μ^{\pm}) beams of energy 100 to 200 GeV

6 6

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

COMPASS Experimental Setup

COMPASS Experimental Setup

- Priamary beam 400 GeV p from SPS
 - Impinging on Be production target
- 190 GeV secondary hadron beams
 - h^- beam: 97% π^- , 2% K^- , 1% p
 - h^+ beam: 75% π^+ , 24% p, 1% K^+
- > 160 GeV tertiary muon beams
 - μ^{\pm} longitudinally polzaized

Large-acceptance forward spectrometer

- Precise tracking (350 planes)
 SciFi, Silicon, MicroMegas, GEM, MWPC, DC, straw
- PID CEDARs, RICH, calorimeters, Muon Walls Various targets:
- Polarized soild-state NH₃ or ⁶LiD
- Liquid H₂
- Solid-state nuclear targets
- NIM A 577 (2007) & NIM A 779 (2015) 69

COMPASS Setup for Exclusive Processes

PB05-06

COMPASS

- Priamary beam 400 GeV p from SPS
 - Impinging on Be production target
- > 190 GeV secondary hadron beams
 - h^- beam: 97% π^- , 2% K^- , 1% p
 - h^+ beam: 75% π^+ , 24% p, 1% K^+
- 160 GeV tertiary muon beams
 - μ^{\pm} longitudinally polzaized

To ensure exclusivity:

CAMERA recoil proton detector

COMPASS Setup for SIDIS

COMPASS Setup for Drell-Yan

- Priamary beam 400 GeV p from SPS
 - Impinging on Be production target
- 190 GeV secondary hadron beams
 - h^- beam: 97% π^- , 2% K^- , 1% p
 - h^+ beam: 75% π^+ , 24% p, 1% K^+
- 160 GeV tertiary muon beams
 - μ^{\pm} longitudinally polzaized

COMPASS Experiment

02-2022 COMPASS data taking	2002-2004	DIS & S
	2005	CERN d
	2006 2007 2008-2009 2010 2011 2012 2012 pilot run	DIS & S DIS & S Hadror SIDIS, J DIS & S Primak DVCS/H
	2013	CERN c
	2014-2015 2016-2017 2018	Drell-Ya DVCS/ł Drell-Ya
20(2019-2020	CERN d

2002-2004	DIS & SIDIS, μ^+-d , 160 GeV, L & T polarized target
2005	CERN accelerator shutdown, increase of COMPASS acceptance
2006 2007 2008-2009 2010 2011 2012 2012 pilot run	DIS & SIDIS, μ^+ -d, 160 GeV, L polarized target DIS & SIDIS, μ^+ -p, 160 GeV, L & T polarized target Hadron spectroscopy & Primakoff reaction, $\pi/K/p$ beam SIDIS, μ^+ -p, 160 GeV, T polarized target DIS & SIDIS, μ^+ -p, 200 GeV, L polarized target Primakoff reaction, $\pi/K/p$ beam DVCS/HEMP/SIDIS, μ^+ & μ^- -p, 160 GeV, unpolarized target
2013	CERN accelerator shutdown, LS1
2014-2015 2016-2017 2018	Drell-Yan, π- - p , T polarized target DVCS/HEMP/SIDIS, μ ⁺ & μ ⁻ - p , 160 GeV, unpolarized target Drell-Yan, π- - p , T polarized target
2019-2020	CERN accelerator shutdown, LS2
2021-2022	SIDIS, μ ⁺ -d, 160 GeV, T polarized target

Study hadron structure with complmentary tools:

- COMPASS holds the record for the longest-running CERN experiment
- Unpolarized or L/T polarized targets
- Polarized muon beams for DIS, SIDIS, DVCS, DVMP
- Hadron beams for hadron spectroscopy and Drell-Yan

Lanscape – Global Programs of DVCS

11

DVCS

DVCS: $l + p \rightarrow l' + p' + \gamma$

To experimentally access the information about Generalized Parton Distributions (GPDs), DVCS is regarded as the golden channel and its interference with the well-understood Bethe-Heitler process gives access to more info.

The variables measured in the experiment: $E_{\ell}, Q^2, x_{Bj} \sim 2\xi / (1+\xi),$

t (or
$$\theta_{\gamma^*\gamma}$$
) and ϕ ($\ell\ell'$ plane/ $\gamma\gamma^*$ plane)

DVCS

25 years 1997 - 2022

DVCS: $l + p \rightarrow l' + p' + \gamma$

To experimentally access the information about Generalized Parton Distributions (GPDs), DVCS is regarded as the golden channel and its interference with the well-understood Bethe-Heitler process gives access to more info.

The variables measured in the experiment:

$$E_{\ell}, Q^2, x_{Bj} \sim 2\xi / (1+\xi),$$

t (or $\theta_{\gamma^*\gamma}$) and ϕ ($\ell\ell'$ plane/ $\gamma\gamma^*$ plane)

DVCS

The GPDs depend on the following variables:

x: average longitudinal momentum frac.

 ξ : longitudinal momentum diff.

t: four momentum transfer (correlated to b_{\perp} via Fourier transform)

Q²: virtuality of γ^*

Sensible to 4 GPDs, with LH_2 target and small x_B coverage \rightarrow focuses on **H** at COMPASS

Transverse Imaging and Pressure Distribution

COMPASS 2016 Preliminary Results

16

 \succ The transverse-size evolution as a function of $x_{Bj} \rightarrow$ Expect at least 3 x_{Bj} bins from 2016-17 data

GPDs in Hard Exclusive Meson Production

4 chiral-even GPDs: helicity of parton unchanged

 $H^q(x, \xi, t)$ $E^q(x, \xi, t)$ → Vector Meson $\widetilde{H}^q(x, \xi, t)$ $\widetilde{E}^q(x, \xi, t)$ → Pseudo-Scalar Meson

+ 4 chiral-odd or transversity GPDs: helicity of parton changed (not possible in DVCS)

$$\begin{array}{ll} \mathbf{H}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \mathbf{E}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) \\ \widetilde{\mathbf{H}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \widetilde{\mathbf{E}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \overline{\mathbf{E}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) \end{array} & \overline{\mathbf{E}}_{\mathsf{T}}^{q} = \mathbf{2} \ \widetilde{\mathbf{H}}_{\mathsf{T}}^{q} + \mathbf{E}_{\mathsf{T}}^{q} \end{array}$$

- Universality of GPDs, quark flavor filter
- Ability to probe the chiral-odd GPDs.
- Additional non-perturbative term from meson wave function
- In addition to nuclear structure, provide insights into reaction mechanism

Exclusive π^0 Production on Unpolarized Proton

$$\mu \mathbf{p} \rightarrow \mu \pi^{0} \mathbf{p} \qquad \frac{d^{2}\sigma}{dtd\phi_{\pi}} = \frac{1}{2\pi} \left[\left(\frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right]$$

COMPASS

19

$$\frac{d\sigma_L}{dt} = \frac{4\pi\alpha}{k'} \frac{1}{Q^6} \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \operatorname{Re} \left[\langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\}$$
Leading twist expected to be dominant
But measured as \approx only a few % of $\frac{d\sigma_T}{dt}$

The other contributions arise from the coupling between chiral-odd (quark helicity flip) GPDs to the twist-3 pion amplitude

$$\frac{d\sigma_T}{dt} = \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[\left(1 - \xi^2 \left(|\langle H_T \rangle|\right)^2 - \frac{t'}{8m^2} \left(|\langle \bar{E}_T \rangle|\right)^2 \right] \right]$$
$$\frac{\sigma_{LT}}{dt} = \frac{4\pi\alpha}{\sqrt{2}k'} \frac{\mu_\pi}{Q^7} \xi \sqrt{1 - \xi^2} \frac{\sqrt{-t'}}{2m} \operatorname{Re}\left[\langle H_T \rangle \right] \langle \tilde{E} \rangle \right]$$
$$\frac{\sigma_{TT}}{dt} = \frac{4\pi\alpha}{k'} \frac{\mu_\pi^2}{Q^8} \frac{t'}{16m^2} \left[\langle \bar{E}_T \rangle \right]^2$$

 $[\]varepsilon$: degree of longitudinal polarization

COMPASS 2016 Exclusive π^0 Prod. on Unpolarized Proton

New 2016 data release: statistics about 2.3 times larger than the published 2012 pilot run.

 $\gamma^* p \rightarrow \pi^0 p'$

 $v \in [8.5, 28] \text{ GeV}$

0.4

 $Q^2 \in [1, 5] \text{ GeV}^2/c^2$

0.6

 $|t| (\text{GeV}/c)^2$

SIDIS Cross Section and TMDs at Leading Twist

Measure the azimuthal modulations in experiment

$$A_{\rm UT}(\phi) = \frac{1}{fS_T} \frac{N^{\uparrow}(\phi) - N^{\downarrow}(\phi)}{N^{\uparrow}(\phi) + N^{\downarrow}(\phi)}$$

More complicated in reality
1st: beam, 2nd: target
U: Unpolarized
T: Transversly
L: Logitudinally

COMPASS 2010 – Trans. Pol. Target

- Difference of quarks with spin parallel or anti-parallel to the transverse spin of the nucleon
- Describes the spin-spin correlation of a transversely polarized parton in a transversely polarized hadron.

Significant asymmetry of opposite sign for π^+ & π^-

- Agreement between COMPASS & HERMEST for x > 0.032
- COMPASS Q² domain larger by a factor of 2 to 3
 → Absence of Q² evolution?

Extraction of Transversity PDF

COMPASS 2022 – Trans. Pol. Deuteon

- Important input for Transversity PDF
- Uncertainty reduced in all p and 2022
 d data, especially for the d-quark h₁

Interesting quantity not only related to QCD phenomenology, but also for ab initio studies and BSM physics.

data	$\delta u = \int_{0.008}^{0.210} \mathrm{d}x h_1^{u_v}(x)$	$\delta d = \int_{0.008}^{0.210} \mathrm{d}x h_1^{d_v}(x)$	$g_{\rm T} = \delta u - \delta d$
previous [25, 28, 29]	0.187 ± 0.030	-0.178 ± 0.097	0.365 ± 0.078
previous [25, 28, 29] and present	0.214 ± 0.020	-0.070 ± 0.043	0.284 ± 0.045

Complementary masurements at JLab and future EIC

COMPASS 2010 – Trans. Pol. Target

- Correlates the quark transverse momentum k_T and the transverse spin of the nucleon
- Describes the strength of the distortion in transverse momentum space relative to the symmetric unpolarized distribution f_1

Sivers Asymmetry

- Sivers effect smaller at COMPASS than at HERMES. TMD evolution?
- Kaon amplitudes larger than pion, unexpected if uquark scattering dominates. Role of sea quarks?

COMPASS 2022 – Trans. Pol. Deuteon

- Sivers asymmetries, weighted with the hadron transverse momentum P_T , provide direct measurement of TMD k_T^2 moments without assumptions on K_T shape.
- Different signs in u- and d-quark Sivers functions, uncertainty significantly reduced in d-quark case
- Crucial input for Sivers PDF for the d-quark

SIDIS & Drell-Yan

SIDIS: TMD \otimes FF^h TMDs involve final state interaction Drell-Yan: $\pi + p^{\uparrow} \rightarrow \mu^{+} + \mu^{-} + X$ $H_{\pi}(P_{\pi})$ PDF $q(k_{\pi})$ $q(k_{\pi})$ $\gamma^{*}(q)$ $\mu^{-}(l)$ $\mu^{+}(l')$

DY: TMD^{Beam} \otimes TMD^{Target} TMDs involve initial state interaction

IDY

TMD universality, expect same magnitude but different signs for naïve T-odd TMD PDFs in SIDIS and DY

$$h_{1,p}^{\perp q} \Big|_{SIDIS} = -h_{1,p}^{\perp q} \Big|_{DY} \qquad \qquad f_{1T,p}^{\perp q} \Big|_{SIDIS} = -f_{1T,p}^{\perp q}$$

SIDIS and Single-polarised Drell-Yan

SIDIS and Single-polarised Drell-Yan

Uniqueness in Testing TMD Universality

➢ SIDIS with transversely polarized proton
 → COMPASS 2007, 2010

➢ Pion-induced transversely polarized Drell-Yan → COMPASS 2015, 2018

 $> Q^2$ -evolution effect minimized with similar (x, Q^2) coverage in comparing the TMDs extracted from DIDIS and Drell-Yan

Sivers in Drell-Yan and SIDIS

Final Result on TSA in Drell-Yan

Arxiv:2312.17379 Submitted to PRL

COMPASS pion induced DY 2015 + 2018

- Average Sivers asymmetry integrated over the entire kinematic range found to be above zero at about 1.5 σ of the total uncertainty.
- Confirm the fundamental QCD prediction of a sign change of naïve time-reversal-odd TMD PDFs when comparing Drell-Yan and SIDIS.

Final Result on TSA in Drell-Yan

Arxiv:2312.17379 Submitted to PRL

COMPASS pion induced DY 2015 + 2018

Pion Structure and More

Figure: Vinvent Andrieux, 25th Spin Symposium

Inputs for pion PDF studyCold nuclear matter effect

- > 3-D partonic structure provides further insights into nucleon properties
- > A limited selection of COMPASS results has been presented
 - GPDs though DVCS & HEMP \rightarrow working on 2016-2017
 - TMDs through SIDIS & Drell-Yan \rightarrow new 2022 data release

> COMPASS has entered its analysis phase, expect more results soon!

- EIC will further extend the measurements covered by COMPASS
 - Wide phase space coverage
 - GPD & TMD study with various processes
 - Meson structure via Sullivan process
 - Cold nuclear matter effect

Backup Slides

COMPASS 2016 – Unpol. Target

Cahn effect & Boer-Mulders Collins FF

> Boer-Mulders: contributing to $\cos \varphi_h$ and $\cos 2\varphi_h$ Describes the strength of the spin-orbit correlation between the quark spin s_T and the intrinsic transverse momentum k_T

- Still Unknown
- Complex kinematic dependences & interesting differences between positive and negative hadrons from previous observations

> Cahn effect: contributing to $\cos \varphi_h$

Azimuthal modulation induced due to the presence of non-zero intrinsic transverse momentum k_T of unpolarized quarks in the unpolarized nucleon.

- Strong P_T dependence
- Complementary access to k_T
- On-going analysis with proton data
- More to come with 2022 deuteron data

2012 Exclusive $\boldsymbol{\omega}$ Prod. on Unpolarized Proton

COMPASS++/AMBER

A new QCD facility at the M2 beam line of the CERN SPS

- Unique beam line with polarised

 <u>µ[±]</u> and high-intensity Pion beam
- Possible high-intensity antiproton and Kaon beams, provided by RFseparation technique
- With upgraded apparatus

Proposed physics goals

Proton Radius Meson PDF – gluon PDF Proton spin structure 3D imaging (TMDs and GPDs) Hadron spectroscopy Anti-matter cross section

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware Additions
μp elastic scattering	Precision proton-radius measurement	100	4 · 10 ⁶	100	μ^{\pm}	high- pressure H2	2022 1 year	active TPC, SciFi trigger, silicon veto,
Hard exclusive GPD E reactions		160	2 · 107	10	μ^{\pm}	NH_3^\uparrow	2022 2 years	recoil silicon, modified PT magnet
Input for Dark Matter Search	p production cross section	20-280	$5 \cdot 10^5$	25	р	LH2, LHe	2022 1 month	LHe target
p-induced Spectroscopy	Heavy quark exotics	12, 20	5 · 10 ⁷	25	P	LH2	2022 2 years	target spectr.: tracking, calorimetry
Drell-Yan	Pion PDFs	190	7 · 10 ⁷	25	π^{\pm}	C/W	2022 1-2 years	
Drell-Yan (RF)	Kaon PDFs & Nucleon TMDs	~100	10 ⁸	25-50	K^{\pm}, \overline{p}	NH [↑] ₃ , C/W	2026 2-3 years	"active absorber", vertex det.
Primakoff (RF)	Kaon polarisa- bility & pion life time	~100	5 · 106	>10	<i>K</i> -	Ni	non-exclusive 2026 1 year	
Prompt Photons (RF)	Meson gluon PDFs	≥ 100	5 · 106	10-100	$rac{K^{\pm}}{\pi^{\pm}}$	LH2, Ni	non-exclusive 2026 1-2 years	hodoscope
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	5 - 106	25	<i>K</i> -	LH2	2026 1 year	recoil TOF, forward PID
Vector mesons (RF)	Spin Density Matrix Elements	50-100	5.106	10-100	K^{\pm}, π^{\pm}	from H to Pb	2026 1 year	39

Possible RPD for COMPASS++/AMBER

A recoil proton detector (RPD) is mandatory to ensure the exclusivity. A Silicon detector is included *between* the target surrounded by the modified MW cavity *and* the polarizing magnet

A technology developed at JINR for NICA for the BM@N experiment

No possibility for ToF \rightarrow PID of p/ π with dE/dx Momentum and trajectory measurments $|t|_{min} \sim 0.1 \text{ GeV}$