

Satoshi Yano Hiroshima University SKCM²

• TOF is a main PID detector covering low- p_T at mid-rapidity

- TOF is a main PID detector covering low-*p*_T at mid-rapidity •
- High momentum particle momentum resolution is improved by TOF ullet

- TOF is a main PID detector covering low- p_T at mid-rapidity ullet
- High momentum particle momentum resolution is improved by TOF lacksquare
- Beam-induced background can be rejected by timing information lacksquare

Tracking detectors in ePIC

- TOF is a main PID detector covering low- p_T at mid-rapidity
- High momentum particle momentum resolution is improved by TOF lacksquare
- Beam-induced background can be rejected by timing information lacksquare
- Timing resolution of 35 ps and spatial resolution of 30 um is required ${\color{black}\bullet}$
 - 3 sigma π/K separation up to ~1.2 GeV/c ____

Tracking detectors in ePIC

- TOF is a main PID detector covering low- p_T at mid-rapidity ullet
- High momentum particle momentum resolution is improved by TOF
- Beam-induced background can be rejected by timing information lacksquare
- Timing resolution of 35 ps and spatial resolution of 30 um is required ${\color{black}\bullet}$
 - 3 sigma π/K separation up to ~1.2 GeV/c
- AC-LGAD technology meets the requirements •
 - To reduce total readout channels, strip and pixel type AC-LGAD will be adopted for BTOF ____ and FTOF, respectively

Tracking detectors in ePIC

BTOF is composed of 144 modules to make a cylindric •

Detector Layout of BTOF

- BTOF is composed of 144 modules to make a cylindric •
- 64 AC-LGAD strip sensors are attached to one module lacksquare
 - ASIC place is under discussion (depending on the ASIC pixel geometry)

Detector Layout of BTOF

Detector Layout of BTOF

- BTOF is composed of 144 modules to make a cylindric
- 64 AC-LGAD strip sensors are attached to one module
 - ASIC place is under discussion (depending on the ASIC pixel geometry)
- Radius is 60 63 cm from the beam pipe covering -1.42< η <1.77

e a cylindric one module the ASIC pixel geometry) overing -1.42<n<1.77

Detector Layout of BTOF

- •
- BTOF is composed of 144 modules to make a cylindric 64 AC-LGAD strip sensors are attached to one module – ASIC place is under discussion (depending on the ASIC pixel geometry) Radius is 60 - 63 cm from the beam pipe covering $-1.42 < \eta < 1.77$
- Total material budget in acceptance is ~0.01 X/X₀ lacksquare

BTOF is composed of 1816 modules to make a disk •

Detector Layout of FTOF

BTOF shape

- BTOF is composed of 1816 modules to make a disk ullet
- 12 or 16 AC-LGAD pixel sensors are attached to one module •

Module top view

Detector Layout of FTOF

BTOF shape

- BTOF is composed of 1816 modules to make a disk ullet
- 12 or 16 AC-LGAD pixel sensors are attached to one module lacksquare
- Radius is 8 60 cm from the beam pipe covering $1.86 < \eta < 3.85$ •

Module top view

Detector Layout of FTOF

Detector Layout of FTOF

- BTOF is composed of 1816 modules to make a disk
- 12 or 16 AC-LGAD pixel sensors are attached to one module
- Radius is 8 60 cm from the beam pipe covering $1.86 < \eta < 3.85$
- Service hybrid, readout board + power board, is placed in front of sensors

Detector Layout of FTOF

- BTOF is composed of 1816 modules to make a disk ullet
- 12 or 16 AC-LGAD pixel sensors are attached to one module lacksquare
- Radius is 8 60 cm from the beam pipe covering $1.86 < \eta < 3.85$ lacksquare
- Service hybrid, readout board + power board, is placed in front of sensors lacksquare
- Total material budget in acceptance is ~0.025 X/X₀

Detector Layout of FTOF

- BTOF is composed of 1816 modules to make a disk ullet
- 12 or 16 AC-LGAD pixel sensors are attached to one module lacksquare
- Radius is 8 60 cm from the beam pipe covering $1.86 < \eta < 3.85$ lacksquare
- Service hybrid, readout board + power board, is placed in front of sensors lacksquare
- Total material budget in acceptance is ~0.025 X/X₀
- Service hybrid and cooling system design is important for FTOF lacksquare

requirements

- AC-LGAD technology meets the strict spatial and time resolution • requirements
- Strip-type sensor, 3.2 x 4 cm² sensor size with 0.05 x 1 cm² metals, is lacksquareused in **BTOF**
 - The readout metal geometry in a sensor is 64 x 4 and 256 channels each

- AC-LGAD technology meets the strict spatial and time resolution • requirements
- Strip-type sensor, 3.2 x 4 cm² sensor size with 0.05 x 1 cm² metals, is lacksquareused in **BTOF**
 - The readout metal geometry in a sensor is 64 x 4 and 256 channels each
- 2 ASICs are attached for each with wire bonding

- AC-LGAD technology meets the strict spatial and time resolution • requirements
- Strip-type sensor, 3.2 x 4 cm² sensor size with 0.05 x 1 cm² metals, is lacksquareused in **BTOF**
 - The readout metal geometry in a sensor is 64 x 4 and 256 channels each
- 2 ASICs are attached for each with wire bonding

- Total information
- 9216 sensors
- **10** m²
- **2.4 M readout channels**

- Not only high-time resolution TDC (TOA) but also ADC must be measured ullet
- Due to the large capacitance and readout geometry characteristics caused by the ulletstrip type, care must be taken when selecting an ASIC

- Not only high-time resolution TDC (TOA) but also ADC must be measured lacksquare
- Due to the large capacitance and readout geometry characteristics caused by the lacksquarestrip type, care must be taken when selecting an ASIC
- EICROC (32x32) is one of the common ASICs used in ePIC lacksquare
 - Design focuses on pixel AC-LGAD readout (tuned for low capacitance)
 - 10-bit TDC and 8-bit ADC is now available (EICROCO)
 - Modification is necessary to read higher capacitance sensor (strip AC-LGAD) ____

- Not only high-time resolution TDC (TOA) but also ADC must be measured ullet
- Due to the large capacitance and readout geometry characteristics caused by the lacksquarestrip type, care must be taken when selecting an ASIC
- EICROC (32x32) is one of the common ASICs used in ePIC lacksquare
 - Design focuses on pixel AC-LGAD readout (tuned for low capacitance)
 - 10-bit TDC and 8-bit ADC is now available (EICROCO)
 - Modification is necessary to read higher capacitance sensor (strip AC-LGAD) ____
- FCFD is a new ASIC to use strip AC-LGAD readout lacksquare
 - FCFD can read higher capacitance AC-LGAD sensor ____
 - Multiple-channel analog is available for FCFDv1

EICROCO

FCFDv0

- Not only high-time resolution TDC (TOA) but also ADC must be measured ullet
- Due to the large capacitance and readout geometry characteristics caused by the ulletstrip type, care must be taken when selecting an ASIC
- EICROC (32x32) is one of the common ASICs used in ePIC lacksquare
 - Design focuses on pixel AC-LGAD readout (tuned for low capacitance)
 - 10-bit TDC and 8-bit ADC is now available (EICROCO)
 - Modification is necessary to read higher capacitance sensor (strip AC-LGAD) ____
- FCFD is a new ASIC to use strip AC-LGAD readout lacksquare
 - FCFD can read higher capacitance AC-LGAD sensor
 - Multiple-channel analog is available for FCFDv1

EICROCO

FCFDv0

ASIC

- Not only high-time resolution TDC (TOA) but also ADC must be measured ${\color{black}\bullet}$
- Due to the large capacitance and readout geometry characteristics caused by the ulletstrip type, care must be taken when selecting an ASIC
- EICROC (32x32) is one of the common ASICs used in ePIC lacksquare
 - Design focuses on pixel AC-LGAD readout (tuned for low capacitance)
 - 10-bit TDC and 8-bit ADC is now available (EICROC0)
 - Modification is necessary to read higher capacitance sensor (strip AC-LGAD)
- FCFD is a new ASIC to use strip AC-LGAD readout lacksquare
 - FCFD can read higher capacitance AC-LGAD sensor
 - Multiple-channel analog is available for FCFDv1
- The possibility of HGCROC has begun to be discussed ullet
 - It can measure ADC, TOA, and TOT
 - We have to investigate the possibility of the chip as soon as possible and make collaboration with the experts

EICROCO

FCFDv0

ASIC

Institutes in TOF tasks (official)

- Brookhaven National Laboratory (USA)
- Fermi National Accelerator Laboratory (USA)
- Rice University (USA)
- Oak Ridge National Laboratory (USA)
- Ohio State University (USA)
- Purdue University (USA)
- University of California Santa Cruz (USA)
- University of Illinois at Chicago (USA)
- Hiroshima University (JP)
- RIKEN (JP)
- Shinshu University (JP)
- Nara Woman University (JP)
- National Chen-Kung University (TW)
- National Taiwan University (TW)
- IJCLab (FR)

Tasks in BTOF

AC-LGAD sensor

- BNL
- ORNL
- Univ. of California, Santa Cruz
- Univ. of Illinois, Chicago
 - Hiroshima University
 - Shinshu University

Frontend ASIC

- Fermilab
- Rice University
- Hiroshima University
- National Taiwan University
- IJCLab

Sensor-ASIC integration

- BNL
- ORNL
- Univ. of California, Santa Cruz
- Univ. of Illinois, Chicago
- National Taiwan University

- Module structure
- Purdue University
- National Cheng-Kung University
- Module assembly
- BNL
- ORNL
- Ohio State University
- Univ. of California, Santa Cruz
 - Hiroshima University
- RIKEN
- Nara Woman University
- National Taiwan University
- Flex PCB
- Service Hybrid
 Rice University
- Backend electronics
 BNL

	2024				2025
Prototype AC-LGAD	Validatio	n			
Full-size	Fabricatio	n			
AC-LGAD #1			Valio	dation	
Full-size				Fabri	cation
			•		
FCFDVI		Valida	ation		
FCFDv2				abrication	
FCFDv3					
EICROCO				Validation	
EICROC1					
EICROC2					

Important elements (Sensor + ASIC)

Important elements (Sensor + ASIC)

	va		
		Fabrication	
			Validation

Institutes interested in ePIC-TOF in Asia

Participated in ePIC-TOF project officially

Sorted by institutes

- University of Science and Technology of China (AC-LGAD, Frontend ASIC)
- Japan 🧧

China

•

- 🙀 Hiroshima University (AC-LGAD, Frontend ASIC, Sensor-ASIC integration, Simulation)
- Y Nara Woman's University (Frontend ASIC, Module Assembly, Stave Assembly)
- RIKEN (Module Assembly, Stave Assembly)
- Shinshu University (AC-LGAD, Frontend ASIC)
- University of Tokyo (DAQ, Reconstruction)
- Korea

a 💨

- Korea University (AC-LGAD)
- Kyungpook National University (AC-LGAD)

• Taiwan 📥

- National Cheng Kung University (Cooling System, Support Structure, Module Structure)
 - National Taiwan University (Sensor-ASIC integration, frontend ASIC, Module Assembly)

A National Central University (Simulation)

Institutes interested in ePIC-TOF in Asia

Participated in ePIC-TOF project officially

Sorted by institutes

- University of Science and Technology of China (AC-LGAD, Frontend ASIC)
- Japan 🛛 🗧 •

China

•

- 🙀 Hiroshima University (AC-LGAD, Frontend ASIC, Sensor-ASIC integration, Simulation)
- Nara Woman's University (Frontend ASIC, Module Assembly, Stave Assembly)
- RIKEN (Module Assembly, Stave Assembly)
- Shinshu University (AC-LGAD, Frontend ASIC)
- University of Tokyo (DAQ, Reconstruction)
- Korea •

- Korea University (AC-LGAD)
- Kyungpook National University (AC-LGAD)

Taiwan 📕 •

- A National Cheng Kung University (Cooling System, Support Structure, Module Structure)
- A National Taiwan University (Sensor-ASIC integration, frontend ASIC, Module Assembly)

A National Central University (Simulation)

Sorted by activities

• AC-LGAD

- Hiroshima University
- Korea University
- Kyungpook National University
 - Shinshu University
 - University of Science and Technology of China

• Frontend ASIC

- Hiroshima University
- Nara Woman's University
- Shinshu University
- University of Science and Technology of China

• Sensor-ASIC integration

- Hiroshima University
- National Taiwan University

Support and Module structure, Cooling

National Cheng Kung University

Module Assembly

RIKEN

Stave Assembly

• Power Supply National Cheng Kung University

Simulation

- Hiroshima University National Central University
- DAQ and Reconstruction

TOF activity in Hiroshima University (JP)

- AC-LGAD sensor R&D •
 - We have started AC-LGAD R&D for ePIC (pixel and strip) in Japan —
 - The R&D setup is being built at HU ____
 - The next batch (full-size sensor) will be tested at HU _____
- Frontend ASIC (EICROC) R&D
 - We have started EICROC R&D with IJCLab/Omega and BNL teams ____
 - The R&D setup has been built at HU _____

Signal strength v.s. input charge

R&D setup at HU

TOF activity in Taiwan

- National Central University group has started the simulation study I encourage them to present the nice results at the general TOF meeting
- National Cheng Kung University (NCKU) is working on the lacksquaresupport structure design
 - Simulation study of the frequency and thermal analysis
 - Thermal test will be conducted at NCKU

From Yu-Tang Wang (NCKU) presentation at the general TOF

•

Collaboration with the sPHENIX INTT group will play an important role in the ePIC-TOF project

- Collaboration with the sPHENIX INTT group will play an important role in the ePIC-TOF project ulletINTT is the strip-type semiconductor detector in sPHENIX, which is similar to BTOF

 - 9 institutes from Japan, Taiwan, and the U.S.A. participate in the project ____

- Collaboration with the sPHENIX INTT group will play an important role in the ePIC-TOF project ulletINTT is the strip-type semiconductor detector in sPHENIX, which is similar to BTOF

 - 9 institutes from Japan, Taiwan, and the U.S.A. participate in the project
- Contributions from Japan and Taiwan institutes are: lacksquare
 - Silicon sensor R&D and production
 - Carbon stave R&D and production
 - PCB R&D and production
 - Stave assembly

- Collaboration with the sPHENIX INTT group will play an important role in the ePIC-TOF project ulletINTT is the strip-type semiconductor detector in sPHENIX, which is similar to BTOF

 - 9 institutes from Japan, Taiwan, and the U.S.A. participate in the project
- Contributions from Japan and Taiwan institutes are: lacksquare
 - Silicon sensor R&D and production
 - Carbon stave R&D and production
 - PCB R&D and production
 - Stave assembly

Their technologies and experiences must make the ePIC-TOF project more robust

- Collaboration with the sPHENIX INTT group will play an important role in the ePIC-TOF project • INTT is the strip-type semiconductor detector in sPHENIX, which is similar to BTOF

 - 9 institutes from Japan, Taiwan, and the U.S.A. participate in the project ____
- sPHENIX INTT Japan lacksquare

- Collaboration with the sPHENIX INTT group will play an important role in the ePIC-TOF project • INTT is the strip-type semiconductor detector in sPHENIX, which is similar to BTOF

 - 9 institutes from Japan, Taiwan, and the U.S.A. participate in the project

ePIC-TOF Japan \bullet

- TOF is the main detector for low-p_T particle identification at mid-rapidity and forward-rapidity • High- p_T particle momentum resolution can be improved by the TOF

- TOF is the main detector for low-p_T particle identification at mid-rapidity and forward-rapidity ulletHigh- p_T particle momentum resolution can be improved by the TOF ullet
- AC-LGAD technology meets the requirements, strip and pixel for BTOF and FTOF, respectively ullet

- TOF is the main detector for low-p_T particle identification at mid-rapidity and forward-rapidity lacksquareHigh- p_T particle momentum resolution can be improved by the TOF ullet
- AC-LGAD technology meets the requirements, strip and pixel for BTOF and FTOF, respectively lacksquare
- Sensor prototype fulfills the requirement and full-size sensor is under fabricated lacksquareASIC prototype is under investigation and we have options, EICROC, FCFD, and HGCROC

- TOF is the main detector for low-p_T particle identification at mid-rapidity and forward-rapidity lacksquareHigh- p_T particle momentum resolution can be improved by the TOF ullet
- AC-LGAD technology meets the requirements, strip and pixel for BTOF and FTOF, respectively lacksquare
- Sensor prototype fulfills the requirement and full-size sensor is under fabricated lacksquareASIC prototype is under investigation and we have options, EICROC, FCFD, and HGCROC ${\color{black}\bullet}$
- Collaboration with the sPHENIX INTT makes the TOF project more robust \bullet More contribution from the Asian community is mandatory and expected in the coming months lacksquare

BTOF system structure

Service Hybrid

Improve radiation source test with collimators

- If the path length problem can be solved the radiation source method can measure accurate timing resolution easily
- Collimators can restrict beta radiation path length – $\sigma_{\text{timing}} = 40 \text{ ps} \rightarrow 28 \text{ ps}$ (analysis in progress)
- The trigger rate with ⁹⁰Sr (1M Bq), collimator1 and PMT is ~400 Hz, but adding collimator2 is O(1) Hz
- Design of the test bench with collimators by using GEANT4 is crucial to speed up the AC-LGAD R&D

