ePIC-ZDC

EIC-Asia Workshop National Cheng Kung University, Tainan, Taiwan January 30th, 2024 Yuji Goto (RIKEN)

ePIC ZDC group

- Japan
 - RIKEN
 - Kobe Univ.
 - Shinshu Univ.
 - Univ. of Tsukuba
 - Tsukuba Tech. Univ.
- Taiwan
 - NCU
 - Academia Sinica

- Korea
 - Sejong Univ.
- USA
 - Kansas Univ.
 - PNNL
 - UC Riverside

Far-forward physics at EIC

- Spectator tagging in e+d/³He collisions
 - Neutron structure
 - Neutron spin structure, S & D waves
- e+A collisions at zero degree e+A
 - Breakup determination of the excited nucleus
 - Veto with evaporated neutrons and photons from de-excitation
 - Geometry tagging in e+A collisions
 - Event-by-event characterization of collision geometry
 - Study of nuclear medium effects
 - Short-range correlation (SRC) and EMC effect
 - Nuclear PDF significantly modified by SRC pairs

High-energy process

Forward spectator detected **Roman pot**

Intra-nuclear cascading increases with d (forward particle production)

Leads to evaporation of nucleons from excited nucleus (very forward)

Nucleon Momentum Distribution

Far-forward physics at EIC

Mass of the proton, pion, kaon

- Proton
 - Determination of an important term contributing to the proton mass, the so-called "QCD trace anomaly"
 - Through dedicated measurements of exclusive production of J/ψ and Y close to the production threshold
- Pion and kaon
 - Determination of the quark and gluon contribution to mass with the Sullivan process

<u>Detect "tagged"</u> neutron/lambda

0.1

0.4

0.6

0.8

Δ

x

0.01

January 30, 2024

Requirements to ePIC ZDC

- Large acceptance
 - Large aperture \rightarrow large ZDC
- Soft photon detection of O(100) MeV
 - Detection efficiency more than 90%
- Neutron measurement
 - Energy up to 275 GeV (beam energy)
 - Energy resolution $50\%/\sqrt{E(GeV)} + 5\%$
 - Position resolution 3 mrad/ $\sqrt{E(GeV)}$
- Photon measurement
 - Soft photon with 20-30% energy resolution
 - 20-40 GeV photon with 35%/ $\sqrt{E(GeV)}$ energy resolution and 0.5-1 mm position resolution
- Radiation tolerance
 - O(10¹²-10¹³) n_{eq}/cm² (1MeV neutron eq.) in several years

Requirements to ePIC ZDC

- EM energy resolution
 - Not demanding, but degradation may occur for crystals and/or photon sensors due to radiation
- EM position 0.5mm
 - Fine pitch layer needed

	Energy range	Energy resolution	Position resolution	Others	
Neutron	up to the beam energy	$\frac{50\%}{\sqrt{E}}$ + 5%, ideally $\frac{35\%}{\sqrt{E}}$ + 2%	$\frac{3\text{mrad}}{\sqrt{E}}$	Acceptance: 60 cm × 60 cm	
		Note: The acceptance is required from meson structure mea- surement. Pion structure measurement may require a position resoultion of 1 mm.			
hoton	0.1 – 1 GeV	20 - 30%		Efficiency: 90 – 99%	
		Note: Used as a veto in e+Pb exclusive J/ ψ production			
	20 – 40 GeV	$\frac{35\%}{\sqrt{E}}$	0.5–1 mm		
		Note: u-channel exclusive electromagnetic π^0 production has a milder requirement of $\frac{45\%}{\sqrt{E}}$ + 7% and 2 cm, re- spectively. Events will have two photons, but a single- photon tagging is also useful. Kaon structure measurement requires to tag a neutron and 2 or 3 photons, as decay products of Λ or Σ .			

- Neutron position
 - 3mrad/√E or 6mm @ 275 GeV

Table 2: Physics requirement for ZDC

- Better resolution is not necessary since energy resolution also contributes to $p_{\rm T}$
- Crucial to determine the zero degree: still good position resolution is useful
- Calibration: kinematic end point (275 GeV)
- Need dynamic range up to multi TeV for HI

ePIC-ZDC 1st design

Previous Current ZDC design

*note: space for readout may extend the longitudinal length.

5

ZDC updated design

- Cost reduction design
 - Smaller EMCAL
 - Pb-Si imaging HCAL removed
 - By Po-Ju Lin (NCU) and Michael Pitt (Kansas)

- Use only three Pb/Sci blocks to fit the dimension limitation
 - Overall length approximately 182.7 cm
 - Gaps between crystal-W/Si and W/Si-PbSci: 2 cm
 - Gaps between Pb/Sci blocks: 5 cm
 - In Pb/Sci: Lead thickness = 10.0 mm, scintillator thickness = 2.5mm

Energy Resolution

Slide by Po-Ju Lin (NCU)

- W-Si imaging calorimeter
 - ALICE FoCal-E Pad technology
- 2nd design
 - Lateral dimension based on FoCal-E Pad sensor size 9cm x 8cm → 6 sensors x 7 sensors = 54cm x 56cm
 - Smaller than the 1st design because EM shower leakage is smaller than hadron shower leakage
 - Number of Si readout layers; e.g. $2X_0$ (7.0mm) x 11 W layers + 11 Si readout layers 54
 - Cost reduction option

FoCal-E design

Including cooling & support

FoCal test beam

- arXiv/2311.07413
 - Various test beams in 2021-23 at CERN PS and SPS

- Test beams in Japan
 - FoCal-E Pad test beams at Tohoku Univ. ELPH
 - Next: February 2024
 - Neutron irradiation test in 2022-23 at RIKEN RANS
 - Sensor, photodetectors, chips, cables

- Crystal calorimeter
- 2nd design
 - Lateral dimension 54cm x 56cm matching to W-Si imaging calorimeter
 - Crystal scintillator choice
 - PbWO₄ vs LYSO
 - LYSO crystal by Taiwan group (from CMS)
 - Cooperation with B0 EMCAL
- Crystal calorimeter should be removable if possible
 - Necessary only in eA collisions
 - To reduce radiation

	Xo	LY (ph/MeV)	T dep. of LY (%/K)	Decay time (ns)	λ _{em} nm
PbWO₄ (CMS)	0.89 cm	200	-1.98	5 (73%) 14 (23%) 110 (4%)	420
LYSO	1.14 cm	30,000 (market standard)	-0.28	36	420
SciGlass	2.4-2.8 cm	>100		22-400	440-460

- Crystal calorimeter
 - LYSO test module design for test beam by Taiwan group
 - Lab test with radiation source Co-60 performed in Taiwan

- Test beam at ELPH, Tohoku Univ., Feb. 19-21, 2024
 - NCU, Academia Sinica, Sejong Univ., RIKEN, Tsukuba Univ., Tsukuba Tech Univ.
 - To be continued after the FoCal-E pad test beam (Feb. 13-14) conducted by Tsukuba group

Hadron calorimeter

- 2nd design
 - No Pb-Si imaging calorimeter
 - SiPM-on-tile technology

A possible SiPM-on-tile ZDC design

- SiPMs and bias & readout (HGROC) and scintillator cells (injection molding) relatively inexpensive.
- Could work with either Fe or Pb, but if we use Fe it could be very inexpensive:
 - $\circ \quad \mbox{Could reuse } 2{\times}10{\times}10\ \mbox{cm}^3 \\ \mbox{absorber blocks from STAR} \\$

Slide by Sebouh J. Paul (UCR)

- Major effort to reduce cost of hadronic calorimeter
- Moving to Fe/Scintillator with SiPMs on each tile gives major reduction in cost
- Significant synergies with Forward Hadron Calorimeter

EIC status

- EIC Resource Review Board Meeting
 - 2nd meeting: 2023.12.7-8 in Washington DC
 - EIC IKC (in-king contribution) CD-2 expectations
 - At DOE CD-2/3 Review, planned for early 2025, scope without identified IKC partners will be assumed as DOE scope, and pursued as opportunities
 - IKC are expected to be identified and agreed upon at all stages of the EIC project and the timing of approval cycles in different countries
 - e.g., detector upgrades, accelerator installation and commissioning, in the detector area such as Canada, Japan, Korea, Taiwan, etc.
- EIC Far-Forward and Backward Preliminary Design Review
 - 2024.2.11

Preliminary design

- LYSO crystal calorimeter
- SiPM-on-tile Fe/Sci calorimter

Current Design

4

ZDC integration issues

- ZDC sits outside of the beam pipe
 - Keeping ZDC clear of magnet cryostats, crab cavity on electron side, and hadron beam pipe
- Current hadron beam pipe cuts acceptance for photons
 - Machine is aware of this issue

Summary

- ePIC ZDC updated design
 - EM calorimeter
 - Dimension
 - Crystal scintillator evaluation
 - Hadron calorimeter
 - No imaging layer
 - SiPM-on-tile design
 - Position (& timing) layer
- Preliminary design
 - LYSO crystal calorimeter
 - SiPM-on-tile Fe/Sci calorimeter
- Integration issues