Prospects of lattice computations for TMD physics in Taiwan

C.-J. David Lin

National Yang Ming Chiao Tung University 國立陽明交通大學

EIC Asia workshop @ NCKU 30/01/2024

Outline

★ TMDPDFs and lattice QCD: what and how

★ Existing strategies and numerical results

 \star Our approach

★ Outlook

What and how

The long-term goal

: Nucleon Spin

: Quark Spin

Leading-twist TMDPDFs

Figure from J. Arrington et al., arXiv:2022.13357

Drell-Yan factorisation and TMDPDF

 $\zeta_{i,j}$ from "rapidity divergence" and $\zeta_i \zeta_j = Q^4$

Drell-Yan factorisation and TMDPDF

And the "Collins-Super (CS) kernel" for evolution in ν (ζ)

 $\mathcal{S}(b_T, \mu, \nu) \Rightarrow \mathcal{S}_I(b_T, \mu), K(b_T, \mu) \Rightarrow \text{both are universal}$

Challenges in parton physics from lattice QCD

TMDPDF from LQCD

Relating quasi-TMDPDF to TMDPDF

M.A. Ebert, S.T. Schindler, I.W. Stewart, Y. Zhao, JHEP 04 (2022) 178

$$\begin{split} \tilde{f}^{\text{TMD}}(x, \vec{b}_T, \mu, P^z) &= \frac{C^{\text{TMD}}(\mu, xP^z)}{\text{pertub. theo.}} g_{S}(b_T, \mu) \exp\left[\frac{1}{2} K(b_T, \mu) \log\frac{(2xP^z)^2}{\zeta}\right] \\ &\times f^{\text{TMD}}(x, \vec{b}_T, \mu, \zeta) + \mathcal{O}\left(\frac{q_T^2}{P_z^2}, \frac{\Lambda_{\text{QCD}}^2}{P_z^2}\right) \end{split}$$

 \bigstar To obtain f^{TMD} , one computes \tilde{f}^{TMD} with lattice QCD

Also need non-perturbative calculation of The Collins-Soper kernel, $K(b_T, \mu)$ The soft function, $g_S(b_T, \mu) \sim \sqrt{S_I(b_T, \mu)}$

Existing lattice results

Soft function from the lattice

Soft function from the lattice

LPC Collaboration, JHEP 08 (2023) 172

CS kernel from the lattice

M. Ebert, I. Stewart, Y. Zhao, Phys. Rev., D99 (2019) 034505

 \bigstar Compute qTMDPDF (\tilde{f}^{TMD}) or qTMDWF ($\tilde{\Phi}^{\text{TMD}}$)

 $\bigstar \text{ Determine the CS kernel from the ratio (at large <math>P^z$)} $K(\mu, b_T) = \frac{1}{\log(P_1^z/P_2^z)} \log \frac{C^{\text{TMD}}(\mu, xP_2^z) \tilde{\Phi}^{\text{TMD}}(x, \vec{b}_T, \mu, P_1^z)}{C^{\text{TMD}}(\mu, xP_1^z) \tilde{\Phi}^{\text{TMD}}(x, \vec{b}_T, \mu, P_2^z)}$ perturbative

CS kernel from the lattice

A. Avhadiev, P. Shanahan, M. Wagman, Y. Zhao, Phys. Rev. D198 (2023) 11, 114505

CS kernel from the lattice

LPC Collaboration, JHEP 08 (2023) 172

Our approach

Taiwan lattice community and TMDPDF

Three numerical lattice PIs, all have projects on QCD

→ Ting-Wai Chiu @ Academia Sinica

Anthony Francis @ NYCU C.-J. D. L. @ NYCU

 \star A few phenomenologists working with lattice practitioners → Jiunn-Wei Chen, George W.-S. Hou @ NTU

The NYCU group is working on a TMD-physics project → New approach for soft function and CS kernel A. Francis et al., arXiv: 2312.04315

(MIT) (FNAL)

William (MIT)

Antl**(MolhTy)** Grebe (MIT) collaborators

(National Yang Ming Chiao-Tung U)

S)-Whitehet Petrificity (Nation المجار) Chiao-Tung U)

Anttsakoly Karebeori (KARIR)EN)

David C. YongiAhao (National Value Monda (National Value Minge Lab) Chiao-Tung U)

Syritsyn

Chiao-Tung U)

Need of new approaches for Soft function and CS kernel

Recent, previous lattice calculations involve pion states
 Universality?

 \star Need calculations with other hadrons

 \bigstar Can one proceed without hadrons?

Our approach:

Soft function and CS kernel from Euclidean Wilson loops

Off-light-cone regularisation in Collins' soft function, $S_C(b_T, \mu, y_A, y_B)$

 \bigstar One-loop results show:

→ Collins soft function with space-like regularisation can be obtained

Rapidities are related to the directional vectors of the Wilson lines

$$r_{a,b} \equiv \frac{n_{A,B}^3}{n_{A,B}^0} = \frac{1 + e^{\pm y_{A,B}}}{1 - e^{\pm y_{A,B}}}$$

 \rightarrow Finite-length effects are of $O(b_T^4/L^4)$ or smaller

 $\bigstar \text{ Determine } S_I(b_T, \mu) \text{ and } K(b_T, \mu) \text{ via varying } r_{a,b} \text{ and fitting to}$ $S_C(b_T, \mu, y_A, y_B) = S_I(b_T, \mu) e^{2K(b_T, \mu) \times (y_A - y_B)}$

Rapidity regularisation in our approach What can we reconstruct in Minkowski space?

 $|r_a| < 1, |r_b| < 1, n_A^0 n_B^0 (r_a r_b + 1) < 0$

 $|r_a| < 1, |r_b| < 1, n_A^0 n_B^0 (r_a r_b + 1) > 0$

 $|r_a| > 1, |r_b| > 1, n_A^0 n_B^0 (r_a r_b + 1) < 0$

 $|r_a| > 1, |r_b| > 1, n_A^0 n_B^0 (r_a r_b + 1) > 0$

Our approach: Soft function and CS kernel from Euclidean Wilson loops

 ★ Numerical implementation similar to moving HQET X. Ji, Y. Liu, Y.-S. Liu, Nucl. Phys. B955 (2020) 115054
 → non-static colour sources
 J.E. Mandula, M.C. Ogilvie, Phys. Rev. D45 (1992) 7, R2183 U. Aglietti *et al.*, Phys. Lett. B294 (1992) 281 U. Aglietti, Nucl. Phys. B421 (1994) 191

★ Our exploratory study shows promising statistical accuracy → Stay tuned for results of $K(b_T, \mu)$ and $S_I(b_T, \mu)$

Conclusion and outlook

★ Quasi-TMDPDF strategy available and tested
 → Exploratory numerical works available
 → Learning about the potential size of systematics

 \bigstar Need for alternative strategy

 \rightarrow *e.g.*, CS kernel and soft function from Wilson loops

This is not even the end of the beginning!

Numerical lattice-QCD results hitherto

\star The soft function

LPC Collaboration, Q.-A. Zhang *et. al.*, Phys. Rev., Lett. **125** (2020) 192001 Y. Li *et al.*, Phys. Rev., Lett. **128** (2022) 062002 LPC Collaboration, JHEP **08** (2023) 172

★ The Collins-Soper kernel

P. Shanahan, M. Wagman, Y. Zhao, Phys. Rev., D102 (2020) 0141511
LPC Collaboration, Q.-A. Zhang *et. al.*, Phys. Rev., Lett. 125 (2020) 192001
P. Shanahan, M. Wagman, Y. Zhao, Phys. Rev., D104 (2021) 114502
Y. Li *et al.*, Phys. Rev., Lett. 128 (2022) 062002
M. Schlemmer *et al.*, JHEP 08 (2021) 004
H.-M. Chu *et al.*, Phys. Rev. D106 (2022) 3, 034509
LPC Collaboration, JHEP 08 (2023) 172
A. Avhadiev, P. Shanahan, M. Wagman, Y. Zhao, Phys. Rev. D198 (2023) 11, 114505
H.-T. Shu *et al.*, Phys. Rev. D108 (2022) 7, 074519

★ Unpolarised TMDPDF

LPC Collaboration, J.-C. He et al., arXiv: 2211.02340