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tion on partonic orbital motion and spin-orbit correla-
tions inside the nucleon. In addition, TMDs cast light
on multi-parton correlations at leading twist, which helps
uncover the dynamics of the nucleon’s quark-gluon struc-
ture.

B. TMDs and Spin Asymmetries

Most TMDs stem from the coupling of the quark trans-
verse momentum to the spin of the nucleon and quark.
Hence, one can study spin-orbit correlations in QCD
with TMDs. At leading twist, if one integrates over the
quark transverse momenta inside the nucleon, the sur-
viving TMDs are the unpolarized parton distribution f1,
the longitudinally polarized parton distribution g1 (He-
licity), and the transversely polarized quark distribution
function h1T (Transversity) [17]. In addition to f1, g1,
and h1T , there are five additional leading-twist TMDs
[18, 19], some of which vanish in the absence of quark
orbital angular momentum (OAM). Figure 3 tabulates
these eight TMDs according to quark and nucleon polar-
ization, where U , L, and T denote unpolarized, longitu-
dinal, transverse polarization, respectively. All are func-
tions of the longitudinal momentum fraction x (Bjorken
x) and the quark transverse momentum k?.

FIG. 3. Eight leading-twist TMDs arranged according to
the quark (f, g, h) and nucleon (U,L,T) polarizations. Fig-
ure from Ref. [2].

Let us focus on the following TMDs shown in Fig. 3:
transversity, pretzelosity, Sivers, and worm-gear. Also
given are the dependence on nucleon spin ST, quark spin
sq, and virtual photon three-momentum P, which defines
the longitudinal, z, direction.

(i) Transversity TMD, depending on ST ·sq: in the
parton model, provides information on the proba-
bility of finding transversely polarized quarks (anti-
quarks) in a transversely polarized nucleon. Due
to relativistic e↵ect, the transversity TMD behaves
di↵erently from the helicity TMD, which provides
information on the probability of finding longitudi-
nally polarized quarks (anti-quarks) in a longitudi-

nally polarized nucleon. The integral of transver-
sity over x yields the tensor charge [20–22], which
is an important property of the nucleon that has
been calculated precisely by lattice QCD. Precise
measurements of the tensor charges of the proton
and neutron will allow for their quark flavor separa-
tion and provide direct comparisons to lattice QCD
predictions. Quark tensor charges are coe�cients
for the quark electric dipole moments (EDMs) to
connect to nucleon EDMs if nucleon EDMs orig-
inate from quark EDMs, making them important
for tests of the Standard Model (SM) and searches
for new physics beyond the SM.

(ii) Pretzelosity TMD, depending on ST·[k? k?]·sqT,
describes the correlation among the transverse spin
of the nucleon, transverse spin of the quark, as well
as the transverse motion of the quark inside the
nucleon. The pretzelosity distribution reflects the
di↵erence between helicity and transversity TMDs.
This di↵erence is due to relativistic e↵ects. In var-
ious quark and QCD inspired models, pretzelosity
TMD has been shown to provide quantitative in-
formation about the orbital angular momentum of
the partons inside the nucleon.

(iii) Sivers TMD, depending on ST · k? ⇥ P, de-
scribes a correlation between the nucleon transverse
spin and the quark orbital motion. The Sivers
TMD would vanish if there were no parton Or-
bital Angular Momentum (OAM). Hence, studies
of Sivers TMD help understand the contribution of
the quark OAM to the nucleon spin. Another inter-
esting aspect is the predicted sign change between
the Sivers function extracted from SIDIS process
versus that from Drell-Yan process based on QCD.
The experimental test of such a sign change has
been another important motivation for the study
of the Sivers TMD.

(iv) Worm-gear TMDs, g1T and h
?
1L
, are twist-2

TMD PDFs related to the transverse motion of
quark, nucleon spin, and quark spin. They are
also known as “worm-gear” functions since they
link perpendicular spin configurations between the
nucleon and quarks. More specifically, g1T de-
scribes the distribution of a longitudinally polar-
ized quark inside a transversely polarized nucleon,
while h

?
1L

describes the distribution of a trans-
versely polarized quark inside a longitudinally po-
larized nucleon. Interestingly, the worm-gear func-
tions can not be generated dynamically from co-
ordinate space densities by final-state interactions,
and thus have no analogous terms in impact param-
eter (coordinate) space described by GPDs. Their
appearance is a sign of intrinsic transverse motion
of quarks.

Figure 4 illustrates the SIDIS process in terms of the
azimuthal angles defined with respect to the lepton scat-

Leading-twist TMDPDFs

Figure from J. Arrington et al., arXiv:2022.13357

The long-term goal 



Drell-Yan factorisation and TMDPDF
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Drell-Yan factorisation and TMDPDF

And the “Collins-Super (CS) kernel” for evolution in ν (ζ)

“Beam function”
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Challenges in parton physics from lattice QCD
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TMDPDF from LQCD
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Relating quasi-TMDPDF to TMDPDF

To obtain  , one computes    with lattice QCDf TMD f̃ TMD

The Collins-Soper kernel, K(bT, μ)
Also need non-perturbative calculation of  

The soft function,  gS(bT, μ) ∼ SI(bT, μ)

f̃ TMD(x, b⃗T, μ, Pz) = CTMD(μ, xPz) gS(bT, μ) exp [ 1
2

K(bT, μ) log
(2xPz)2

ζ ]
× f TMD(x, b⃗T, μ, ζ) + 𝒪 ( q2
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pertub. theo.

M.A. Ebert, S.T. Schindler, I.W. Stewart, Y. Zhao, JHEP 04 (2022) 178



Existing lattice results



X. Ji, Y. Liu, Y.-S. Liu, Nucl. Phys. B955 (2020) 115054, Phys. Lett. B811 (2020) 135946
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Soft function from the lattice



Soft function from the lattice
LPC Collaboration,  JHEP 08 (2023) 172
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Figure 11. Final results for the intrinsic soft functions obtained from the CLS and MILC ensembles.

Slat,1 loop± corresponds to the lattice results extracted by  ̃±.

determination of H [34, 38]. usinging the quasi TMDWFs obtained above for di↵erent momenta
{P z

1 , P z
2 } in Eq. (2.14) we get a momentum-dependent CS kernel.

Figure 12. The momentum-dependent and the momentum-independent fits for the CS kernel using the

ansatz Eq. (4.1). We select results obtained at b = 0.3fm for ensemble X650 as an example. Only the real

parts and statistical uncertainties are shown.

In LaMET in principle both momenta should be large enough to significantly suppress the
power corrections. For this reason we choose P z

1 /P z
2 = 3.16 GeV/2.11 GeV, 3.16 GeV/2.64 GeV.

To further extract the leading power contributions, namely to get rid of the finite momentum e↵ects,

– 14 –



CS kernel from the lattice
M. Ebert, I. Stewart, Y. Zhao, Phys. Rev., D99 (2019) 034505
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bT [fm] 0.12 0.24 0.36 0.48 0.60 0.72 0.84
“MS, uNNLL

q 0.12(12) -0.20(9) -0.43(11) -0.64(15) -0.80(15) -0.94(41) -1.24(68)

TABLE II. Quark Collins-Soper kernel “MS

q (bT , µ = 2 GeV) as a function of bT .

FIG. 13. CS kernel in bT space for di�erent choices of
Dirac structure � with uNNLL matching (top panel) and
for all computed accuracies of the matching correction
”“MS

q (bT , µ, x, P z
1 , P z

2 ) (bottom panel).

nonperturbative range of bT corresponding to transverse
momentum scales 240 MeV <

≥ qT
<
≥ 1.6 GeV, through a lat-

tice QCD calculation at a fixed lattice spacing and volume,
quark masses corresponding to an approximately physical
value of the pion mass mfi = 148.8(1) MeV, and uNNLL
perturbative matching power corrections in LaMET. Addi-
tionally, this work presents improved estimates of system-
atic uncertainties associated with perturbative matching
from LaMET, the associated power corrections, and mix-
ing e�ects in staple-shaped operators using the RI/xMOM
renormalization scheme.

While a complete quantification of systematic uncer-
tainties would require performing lattice QCD calcula-
tions at multiple lattice spacings and at larger boosts or
higher-order perturbative matching, the precision and
control over systematic uncertainties achieved in this
work is su�cient to preliminarily compare the CS kernel
determination with phenomenological parameterizations

FIG. 14. Imaginary part of the CS kernel estimator shown
for various accuracies of the perturbative matching correction
”“MS

q (bT , µ, x, P z
1 , P z

2 ).

FIG. 15. CS kernel with uNNLL matching in bT space (green
squares) compared to phenomenological parameterizations of
experimental data in Refs. [44, 51, 52, 55, 56] labeled BLNY,
SV19, Pavia19, MAP22, and ART23, respectively, as well as
perturbative results from Refs. [108–110] labeled N3LL.

of the kernel fit to experimental data. In Fig. 15 the
final determination is compared with the following pa-
rameterizations: Scimemi and Vladimirov (SV19) [51],
Bachetta et al. (Pavia19) [52], the MAP Collaboration
(MAPTMD22) [55], Moos et al. (ART23) [56], as well as
an older parameterization based on the work of Brock,
Landry, Nadolsky and Yuan (BLNY) [44] and employed
in recent code packages for resummation calculations rel-
evant to precision electroweak measurements [111, 112].
Within quantified uncertainties, the data agrees with all
models in the range 0.12 fm <

≥ bT
<
≥ 0.24 fm, with all

but BLNY for 0.24 fm <
≥ bT

<
≥ 0.6 fm, and with SV19,

A. Avhadiev, P. Shanahan, M. Wagman, Y. Zhao, Phys. Rev. D198 (2023) 11, 114505

CS kernel from the lattice



we fit the momentum-dependent CS kernel to the following theoretically inspired ansatz [31]

K(b?, µ, x, P z

1 , P z

2 ) = K(b?, µ) + A
h 1

x2(1 � x)2(P z
1 )2

�
1

x2(1 � x)2(P z
2 )2

i
(4.1)

in the range x 2 [0.1, 0.9]. The intervals beyond this range are discarded as LaMET breaks down
there. We show an example of this fit in Fig. 12 for a selected b?. We point out that the CS
kernel calculated in this way is complex and in Fig. 12 only the real part is shown. The imaginary
part comes from the matching kernel H, not the quasi TMDWF itself, see [31]. The final CS
kernel result is shown in Fig. 13 as red points. We take the real part as the central values. The
statistical uncertainties are shown as inner error bars and the sum of the statistical and systematical
uncertainties are shown as outer error bars. The systematical uncertainties are estimated using the
measure

�sys =
p

ReK(b?, µ)2 + ImK(b?, µ)2 � |ReK(b?, µ)|. (4.2)

From [31] we know that the real part is equivalent to the average of the complex CS kernel calculated
for both “±” directions, which at the same time eliminates the imaginary part.
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Figure 13. A comparison of the CS kernel obtained in this work to the perturbative determination at

three-loop order labelled as “N3LO” [44, 45], phenomenological extractions “SV19” [6] and “MAP22” [12],

and lattice calculations “SWZ 22” [41], “LPC 22” [31] and “RQCD 23” [43].

In Fig. 13 we compare the CS kernel obtained in this work with those from other calculations,
including the 3-loop perturbative results [44, 45], the phenomenological extractions, SV19 [6] and
MAP22 [12], and the lattice calculations [31, 41, 43]. The calculation [41] is based on the analysis
of the quasi pion beam function with leading order matching kernel. The calculation [31] is same
as this work but on the MILC ensemble a12m310. The calculation [43] is based on the analysis
of the (first) Mellin moments of the quasi TMDPDF, including one-loop contributions as well. It
originally contains four data sets, obtained for pion and proton targets with twist-2 and twist-3
quasi TMDPDF operators. Here we have combined them and shown the results in a single band.

– 15 –

LPC Collaboration, JHEP 08 (2023) 172

CS kernel from the lattice
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FIG. 5. Our final results for isovector unpolarized TMDPDFs xf(x, b?, µ, ⇣) at renormalization scale µ = 2 GeV and rapidity
scale

p
⇣ = 2 GeV, extrapolated to physical pion mass 135 MeV and infinite momentum limit P z ! 1, compared with PV17

[6], MAPTMD22 [9], SV19 [7] and BHLSVZ22 [8] global fits (slashed bands). The colored bands denote our results with both
statistical and systematic uncertainties, the shaded grey regions imply the endpoint regions where LaMET predictions are not
reliable.
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SUPPLEMENTAL MATERIALS

Renormalization

In order to renormalize the bare quasi-TMD matrix
elements, the square root of Wilson loop

p
ZE and loga-

rithmic divergence factor ZO need to be computed.
The Wilson loop ZE(r = 2L+z, b?, a) is defined as the

vacuum expectation of a rectangular shaped space-like
gauge links with size r⇥b?. It is introduced to eliminate
the linear divergence form as e��m̄r, which comes from
the self-energy corrections of the gauge link [28, 34], as
well as the pinch-pole singularity, which comes from the
heavy quark e↵ective potential term e�V (b?)L from the
interactions between the two Wilson lines along the z
direction in the staple link [20]. In practice, the signal
to noise ratio of ZE(r, b?, a) grows fast and is hardly
available at large r and/or b?. To address this, we fit the
e↵ective energies of Wilson loop, which denote the QCD
static potentials, and then extrapolate them at large r
and/or b? area, as in Ref. [27]. Numerical results of
Wilson loop are shown in the upper panel of Fig. 6.

Besides, the logarithmic divergences factor ZO can be
extracted from the zero-momentum bare matrix elements
h̃0
� (z, b?, 0, a, L). In order to keep the renormalized ma-

trix elements consistent with perturbation theory, ZO

should be determined with the condition:

ZO(1/a, µ,�) = lim
L!1

h̃0
� (z, b?, 0, a, L)p

ZE (2L+ z, b?, a)h̃MS
� (z, b?, µ)

(12)

in a specific window where z ⌧ ⇤�1
QCD so that the

perturbation theory works well. Here the perturbation
results have been evolved from the intrinsic physical
scale 2e��E/

p
z2 + b2? to MS scale µ via renormalization

group equation [44]. To preserve a good convergence of
the perturbation theory before and after RG evolution,
we choose the region where b? = a, z = 0 or a. More
discussions about RG evolution can be found in the fol-
lowing section. The numerical value for ZO in this work
is taken as 1.0622(87), of which the uncertainty is negli-
gible compared with other systematic uncertainties.

LPC Collaboration,  J.-C. He et al., arXiv: 2211.02340
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Taiwan lattice community and TMDPDF

Three numerical lattice PIs, all have projects on QCD

Anthony Francis @ NYCU
Ting-Wai Chiu @ Academia Sinica

C.-J. D. L. @ NYCU

A few phenomenologists working with lattice practitioners
Jiunn-Wei Chen, George W.-S. Hou @  NTU

The NYCU group is working on a TMD-physics project
New approach for soft function and CS kernel

A. Francis et al., arXiv: 2312.04315
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Need of new approaches for  
Soft function and CS kernel

Recent, previous lattice calculations involve pion states
Universality?

Need calculations with other hadrons

Can one proceed without hadrons?



Our approach: 
Soft function and CS kernel from Euclidean Wilson loops
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No hadron!

Gives the Collins soft function in Minkowski space
Related to  and SI(bT, μ) K(bT, μ)



Our approach: 
Soft function and CS kernel from Euclidean Wilson loops

Collins soft function with space-like regularisation can be obtained

ra,b ≡
n3

A,B

n0
A,B

=
1 + e±yA,B

1 − e±yA,B

Rapidities are related to the directional vectors of the Wilson lines

Finite-length effects are of  or smallerO(b4
T /L4)

One-loop results show:

SC(bT, μ, yA, yB) = SI(bT, μ) e2K(bT,μ)×(yA−yB)

Determine  and  via varying  and fitting toSI(bT, μ) K(bT, μ) ra,b

Off-light-cone regularisation in Collins’ soft function, SC(bT, μ, yA, yB)



Rapidity regularisation in our approach 
What can we reconstruct in Minkowski space?Wilson line directions
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Wayne Morris (NYCU) Soft function from auxiliary fields January 12, 2024 16 / 22



Our approach: 
Soft function and CS kernel from Euclidean Wilson loops

Our exploratory study shows promising statistical accuracy 
Stay tuned for results of  and  K(bT, μ) SI(bT, μ)

J.E. Mandula, M.C. Ogilvie, Phys. Rev. D45 (1992) 7, R2183
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Conclusion and outlook
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Need for alternative strategy
e.g., CS kernel and soft function from Wilson loops 

And…



This is not even the end of the beginning!
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