Prospects of lattice computations for TMD physics in Taiwan

National Yang Ming Chiao Tung University
國立陽明交通大學
EIC Asia workshop＠NCKU
30／01／2024

Outline

\star TMDPDFs and lattice QCD: what and how
\star Existing strategies and numerical results
\star Our approach
\star Outlook

What and how

The long-term goal

Leading-twist TMDPDFs

: Quark Spin

Figure from J. Arrington et al., arXiv:2022.13357

Drell-Yan factorisation and TMDPDF

$$
\frac{d \sigma}{d Q d Y d^{2} q_{T}}=\sum_{i j} H_{i j}(Q, \mu)\left[d^{2} b_{T} e^{i b_{r} \cdot \vec{q}_{T}} \frac{f_{i}^{\mathrm{TMD}}\left(x_{i}, \vec{b}_{T}, \mu, \zeta_{i}\right) f_{j}^{\mathrm{TMD}}\left(x_{j}, \vec{b}_{T}, \mu, \zeta_{j}\right)}{l^{+}}\right.
$$

$\zeta_{i, j}$ from "rapidity divergence" and $\zeta_{i} \zeta_{j}=Q^{4}$

Drell-Yan factorisation and TMDPDF

And the "Collins-Super (CS) kernel" for evolution in $\nu(\zeta)$
$\mathcal{S}\left(b_{T}, \mu, \nu\right) \Rightarrow \mathcal{S}_{I}\left(b_{T}, \mu\right), K\left(b_{T}, \mu\right) \Rightarrow$ both are universal

Challenges in parton physics from lattice QCD

TMDPDF from LQCD

Minkowski, light-cone

Perturbation theory, $K\left(\mu, b_{T}\right), S\left(\mu, b_{T}\right)$

Euclidean, space-like

Relating quasi-TMDPDF to TMDPDF

M.A. Ebert, S.T. Schindler, I.W. Stewart, Y. Zhao, JHEP 04 (2022) 178

$$
\begin{aligned}
\tilde{f}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, P^{z}\right)=\frac{C^{\mathrm{TMD}}\left(\mu, x P^{z}\right)}{\text { pertub. theo. }} & g_{S}\left(b_{T}, \mu\right) \exp \left[\frac{1}{2} K\left(b_{T}, \mu\right) \log \frac{\left(2 x P^{z}\right)^{2}}{\zeta}\right] \\
& \times f^{\mathrm{TMD}\left(x, \vec{b}_{T}, \mu, \zeta\right)+\mathcal{O}\left(\frac{q_{T}^{2}}{P_{z}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{P_{z}^{2}}\right)}
\end{aligned}
$$

\star To obtain f^{TMD}, one computes \tilde{f}^{TMD} with lattice QCD
\star Also need non-perturbative calculation of
The Collins-Soper kernel, $K\left(b_{T}, \mu\right)$
The soft function, $g_{S}\left(b_{T}, \mu\right) \sim \sqrt{S_{I}\left(b_{T}, \mu\right)}$

Existing lattice results

Soft function from the lattice

X. Ji, Y. Liu, Y.-S. Liu, Nucl. Phys. B955 (2020) 115054, Phys. Lett. B811 (2020) 135946
\star Compute the form factor

$$
F\left(b_{T}, P^{z}\right)=\left\langle\pi\left(-p^{z}\right)\right| \bar{u} \Gamma u\left(b_{T}\right) \bar{d} \Gamma d(0)\left|\pi\left(P^{z}\right)\right\rangle
$$

\star At large P^{z}, it factorises to

$$
F\left(b_{T}, P^{z}\right)=S_{I}\left(b_{T}, \mu\right) \int_{0}^{1} d x d x^{\prime} H_{\Gamma}\left(x, x^{\prime}, P^{z}, \mu\right) \rightarrow \text { perturbative }
$$

Soft function from the lattice

LPC Collaboration, JHEP 08 (2023) 172

CS kernel from the lattice

M. Ebert, I. Stewart, Y. Zhao, Phys. Rev., D99 (2019) 034505
\star Compute qTMDPDF (\tilde{f}^{TMD}) or qTMDWF ($\tilde{\Phi}^{\mathrm{TMD}}$)

\star Determine the CS kernel from the ratio (at large P^{z})

$$
K\left(\mu, b_{T}\right)=\frac{1}{\log \left(P_{1}^{z} / P_{2}^{z}\right)} \log \frac{C^{\mathrm{TMD}}\left(\mu, x P_{2}^{z}\right) \tilde{\Phi}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, P_{1}^{z}\right)}{\frac{C^{\mathrm{TMD}}\left(\mu, x P_{1}^{z}\right)}{\text { perturbative }} \tilde{\Phi}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, P_{2}^{z}\right)}
$$

CS kernel from the lattice

A. Avhadiev, P. Shanahan, M. Wagman, Y. Zhao, Phys. Rev. D198 (2023) 11, 114505

CS kernel from the lattice

LPC Collaboration, JHEP 08 (2023) 172

Unpolarised TMDPDF from the lattice

LPC Collaboration, J.-C. He et al., arXiv: 2211.02340

Our approach

Taiwan lattice community and TMDPDF

\star Three numerical lattice PIs, all have projects on QCD
\rightarrow Ting-Wai Chiu @ Academia Sinica
\rightarrow Anthony Francis @ NYCU
\rightarrow C.-J. D. L.@ NYCU
\star A few phenomenologists working with lattice practitioners
\rightarrow Jiunn-Wei Chen, George W.-S. Hou @ NTU
\star The NYCU group is working on a TMD-physics project
\rightarrow New approach for soft function and CS kernel
A. Francis et al., arXiv: 2312.04315

NYCU TMDPDF initiative

Anthony Francis

C.-J. David Lin
collaborators

William Detmold (MIT)

Issaku Kanamori (RIKEN)

Yong Zhao
(Argonne Nat'l Lab)

Need of new approaches for Soft function and CS kernel

\star Recent, previous lattice calculations involve pion states
\rightarrow Universality?
\star Need calculations with other hadrons
\star Can one proceed without hadrons?

Our approach:

Soft function and CS kernel from Euclidean Wilson loops

Gives the Collins soft function in Minkowski space Related to $S_{I}\left(b_{T}, \mu\right)$ and $K\left(b_{T}, \mu\right)$

Our approach:

Soft function and CS kernel from Euclidean Wilson loops
Off-light-cone regularisation in Collins' soft function, $S_{C}\left(b_{T}, \mu, y_{A}, y_{B}\right)$
\star One-loop results show:
\rightarrow Collins soft function with space-like regularisation can be obtained
\rightarrow Rapidities are related to the directional vectors of the Wilson lines

$$
r_{a, b} \equiv \frac{n_{A, B}^{3}}{n_{A, B}^{0}}=\frac{1+\mathrm{e}^{ \pm y_{A, B}}}{1-\mathrm{e}^{ \pm y_{A, B}}}
$$

\rightarrow Finite-length effects are of $O\left(b_{T}^{4} / L^{4}\right)$ or smaller
\star Determine $S_{I}\left(b_{T}, \mu\right)$ and $K\left(b_{T}, \mu\right)$ via varying $r_{a, b}$ and fitting to

$$
S_{C}\left(b_{T}, \mu, y_{A}, y_{B}\right)=S_{I}\left(b_{T}, \mu\right) \mathrm{e}^{2 K\left(b_{T}, \mu\right) \times\left(y_{A}-y_{B}\right)}
$$

Rapidity regularisation in our approach

 What can we reconstruct in Minkowski space?
$\left|r_{a}\right|<1, \quad\left|r_{b}\right|<1, \quad n_{A}^{0} n_{B}^{0}\left(r_{a} r_{b}+1\right)<0$

$\left|r_{a}\right|<1, \quad\left|r_{b}\right|<1, \quad n_{A}^{0} n_{B}^{0}\left(r_{a} r_{b}+1\right)>0$

$\left|r_{a}\right|>1, \quad\left|r_{b}\right|>1, \quad n_{A}^{0} n_{B}^{0}\left(r_{a} r_{b}+1\right)<0$

$\left|r_{a}\right|>1, \quad\left|r_{b}\right|>1, \quad n_{A}^{0} n_{B}^{0}\left(r_{a} r_{b}+1\right)>0$

Our approach:

Soft function and CS kernel from Euclidean Wilson loops
\star Numerical implementation similar to moving HQET

$$
\text { X. Ji, Y. Liu, Y.-S. Liu, Nucl. Phys. B955 (2020) } 115054
$$

\rightarrow non-static colour sources

> J.E. Mandula, M.C. Ogilvie, Phys. Rev. D45 (1992) 7, R2183
> U. Aglietti et al., Phys. Lett. B294 (1992) 281
> U. Aglietti, Nucl. Phys. B421 (1994) 191
\star Our exploratory study shows promising statistical accuracy
\rightarrow Stay tuned for results of $K\left(b_{T}, \mu\right)$ and $S_{I}\left(b_{T}, \mu\right)$

Conclusion and outlook

\star Quasi-TMDPDF strategy available and tested
\rightarrow Exploratory numerical works available
\rightarrow Learning about the potential size of systematics
\star Need for alternative strategy
$\rightarrow e . g$., CS kernel and soft function from Wilson loops
\star And...

Numerical lattice-QCD results hitherto

\star The soft function

LPC Collaboration, Q.-A. Zhang et. al., Phys. Rev., Lett. 125 (2020) 192001
Y. Li et al., Phys. Rev., Lett. 128 (2022) 062002

LPC Collaboration, JHEP 08 (2023) 172
\star The Collins-Soper kernel
P. Shanahan, M. Wagman, Y. Zhao, Phys. Rev., D102 (2020) 0141511

LPC Collaboration, Q.-A. Zhang et. al., Phys. Rev., Lett. 125 (2020) 192001
P. Shanahan, M. Wagman, Y. Zhao, Phys. Rev., D104 (2021) 114502
Y. Li et al., Phys. Rev., Lett. 128 (2022) 062002
M. Schlemmer et al., JHEP 08 (2021) 004
H.-M. Chu et al., Phys. Rev. D106 (2022) 3, 034509

LPC Collaboration, JHEP 08 (2023) 172
A. Avhadiev, P. Shanahan, M. Wagman, Y. Zhao, Phys. Rev. D198 (2023) 11, 114505
H.-T. Shu et al., Phys. Rev. D108 (2022) 7, 074519

* Unpolarised TMDPDF

LPC Collaboration, J.-C. He et al., arXiv: 2211.02340

