2024 JAN 29-31 EI Asia 🛞 🛈 🕸 « СНІР Workshop

National Cheng Kung University Department of Physics, Rm 36169(1F) No.1, University Road, Tainan City, Taiwan

Generalized parton distributions and gravitational form factors of the kaon from the nonlocal chiral quark model

In collaboration with

Parada Hutauruk (PKNU)

Hyeon-Dong Son

Hadron Theory Group, Inha University

Introduction

Generalized parton distributions: 3D-tomography of hadron structure

Generalized parton distributions (GPDs) [D. Mueller et al. 1994]

Hard exclusive reactions for GPDs

Scattering cross-section factorizes as:

hard part (pQCD) 🚫 soft part

$e + p \rightarrow e' + p' + \gamma/M$

Deeply Virtual Compton Scattering / Meson Production (DVCS/DVMP)

- Q^2 : Virtuality \rightarrow hard scattering limit $Q^2 \gg |t|, M_t^2, M_s^2, \cdots$,
- p^+ : Light-front (LF) longitudinal momentum of incoming target,
- p' : Light-front (LF) longitudinal momentum of incoming target,
- $P^+ = (p^+ + p^+)/2$, average hadron momentum,

$$\xi = (p^+ - p'^+)/(p^+ + p'^+)$$
, skewness,

asymmetry of longitudinal momentum of target,

- $x \pm \xi$: Longitudinal momentum fraction,
- : Squared momentum transfer, $\Delta^2 = (q' q)^2 = (p p')^2$,

"kick" transverse momentum depending on scattering angle.

Pion and Kaon structures from Sullivan process

No meson target exists,

Drell-Yan and Sullivan process to study the PDFs \rightarrow global analysis

Eg.) JAM collaboration for pion PDFs

Pion and Kaon GPDs from Sullivan process

DVCS in Sullivan process

 $ep \rightarrow e'\gamma \pi^+ n$

- Cross-section too small for JLAB 11GeV
- Feasibility study for EIC
- Estimation for the process involving the Kaon GPDs can be studied

[Amrath, Diehl, Lansberg, EPJ.C58,179-192]

[Chavez et al, PRL 128 (2022)]

Chiral symmetry breaking and the Goldstone bosons Hadron mass spectra: maximally broken chiral symmetry, eg. N(1/2+, 940) vs N(1/2-, 1535). Spontaneously broken chiral symmetry, $\langle \bar{\psi} \psi \rangle \neq 0 \rightarrow$ massless Goldstone boson (Pion) Explicit chiral symmetry breaking by current quark masses $m \to \text{Goldstone}$ bosons acquire mass M Gell-Mann - Oakes - Renner $M^2 F^2 = -m\langle \bar{\psi}\psi \rangle + \mathcal{O}(m^2)$ Including strangeness ($m_s \ll \Lambda$), SU(3)_f: π, K, η Breaking SU(3)_f with $m_s \approx 100$ MeV may require significant correction in $\mathcal{O}(m^2)$ Quark structure of the kaon can be different from the pion \rightarrow role of m_s in partonic (GPDs, PDFs, ...) and mechanical properties (GFFs) of hadrons ?

Theoretical Studies on the meson GPDs and Gravitational Form factors

Pion structures (PDFs, GPDs, GFFs, ...) are studied extensively,

(Methods:ChPT, Lattice QCD, Effective models as ChQM, LFWF, Dyson-Schwinger, ...)

Pion gravitational form factors

χPT to O(p²) for SU(3)_f GBs [Donoghue and Leutwyler, ZPC52 (1991)]

Crossing and GDAs (Belle data $\gamma\gamma^* \rightarrow \pi^0\pi^0$)

Chiral quark model (non-trivial cancellation of internal pressure) (... many other studies)

We study the Kaon GPDs and GFFs within a nonlocal chiral quark model

by extending Praszalowicz and Rostworowski (pion GPDs in chiral limit)

[Kumano, Song, Teryaev, PRD 97 (2018)] [Masuda et al, PRD 93 (2016)]

- [HDS and H.-Ch. Kim, PRD 90 (2014)]
- Studies on the Kaon GPDs appeared only recently, mostly from LFWF, DSE (only DGLAP region)

[Zhang et al., Phys. Lett. B 815 (2021) 136158. Raya et al., Chin. Phys. C 46 (1) (2022) 013105 Adhikari et al., Phys. Rev. D 104 (11) (2021) 114019]

[Acta Phys. Polon. B 34 (2003) 2699–2730]

Kaon GPDs and GFFs from the NLChQM

Quark one-loop effective action in the large Nc limit

$$S_{\text{eff}} = \int \frac{d^4k}{(2\pi)^4} \bar{\psi}(k)(\not{k} - \hat{m})\psi(k) - \int \frac{d^4k}{(2\pi)^4} \frac{d^4p}{(2\pi)^4} \bar{\psi}(p)\sqrt{M(p)}U^{\gamma_5}(p-k)\sqrt{M(k)}\psi(k),$$
(2.1)
$$M(k) = MF^2(k), \qquad U^{\gamma_5}(x) = \exp\left[\frac{i}{F_{\mathcal{M}}}\gamma^5\lambda^a\mathcal{M}^a\right], \qquad \hat{m} = \text{diag}(m_u, m_d, m_s).$$

Inspired by the liquid instanton model at low-renormalization point $\mu \sim 1/\bar{\rho}$ (in Euclidean) M(0) = 350 MeV is computed in the dilute instanton vacuum Assumed analytic continuation to the Minkowski space-time n-pole type quark form factor: $F(k) = \left(\frac{1}{1-k^2/\Lambda^2}\right)^n$ vs. large ~1/k³ behavior of the instanton induced FFs n, Λ : model parameters fixed by the normalization of the pion light-cone DA (Choosing n=1, $(m_u, m_s, m_{K^+}) = (5, 100, 494)$ MeV, Λ =1.2GeV reproduces the meson decay constants)

Leading Nc quark-loop diagrams for the kaon valence-quark GPDs

- DGLAP (PDF) region governed by the first and second diagrams
- Third diagram contributes only to $-\xi < x < \xi$

The hadronic matrix elements with the quark bilinear operator are computed covariantly in the model

Kaon GPD ($-t = 0.0001 \text{ GeV}^2$)

- Continuous GPDs at cross-over points
- $x = \xi$ but derivatives are not

(common in many other studies)

Physically allowed skewness

$$|\xi| \le \sqrt{\frac{-t}{-t + 4m_K^2}}$$

- At very small |t|, GPDs
 - ~ valence PDF
- Strange quarks have larger momentum (→momentum sum)

Kaon GPD ($-t = 0.5 \text{ GeV}^2$)

- Continuous GPDs at cross-over points
- $x = \xi$ but derivatives are not

(common in many other studies)

Physically allowed skewness

$$\xi| \leq \sqrt{\frac{-t}{-t + 4m_K^2}}$$

- As |t| gets larger, u-quark has stronger t dependence
- Cross-over point growing in larger x
- Difference in ξ for ERBL is significant

Gravitational form factors of the Kaon

$$\langle K^{+}(p') | \hat{T}^{a}_{\mu\nu}(0) | K^{+}(p) \rangle = \begin{bmatrix} 4P_{\mu}P_{\nu} A^{a}(t) + (q^{\mu}q^{\nu} - g^{\mu\nu}q^{2}) D^{a}(t) + g^{\mu\nu}4\Lambda^{2}\bar{c}^{a}(t) \end{bmatrix} = \begin{bmatrix} \int_{-1}^{1} dx \, x \, H^{a/K^{+}}(x,\xi,t) = A^{a/K^{+}}(t) - \xi^{2}D^{a}(t) \\ \int_{-1}^{1} dx \, x \, H^{\bar{s}/K^{+}}(x,\xi,t) = A^{\bar{s}/K^{+}}(t) - \xi^{2}D^{a}(t) \end{bmatrix}$$

~/

Mass distribution of the quarks and gluons inside the kaon At t=0, second Mellin moment of the unpolarized PDF Normalization $A^{q}(0) + A^{g}(0) = 1$

 $D^{a}(t)$ (D-term)

Dispersion relation of the DVCS (and DVMP) amplitudes

Fundamental, but not related to an obvious symmetry [Polyakov, Shuvaev hep-ph/0207153] Internal pressure and shear distributions [Polyakov PLB555 (2003)] Negative for hadrons to satisfy the stability conditions [Polyakov, Schweitzer IJMPA33 (2018)]

 $\bar{c}^{a}(t)$

Non-conservation of quark and gluon parts of EMT ~ $g_{\mu\nu}$ Contributes to the mass(00) and the pressure(ii) (quark and gluon portions) $\sum_{a} \bar{c}^{q} + \bar{c}^{g} = 0$, Smallness of $\sum_{a} \bar{c}^{q}(0)$ at low scale, suppressed by instanton packing fraction

[M. Polyakov, HDS, JHEP 156 (2018)]

Gravitational form factors of the Kaon

$$\left\langle K^{+}(p') \left| \hat{T}_{\mu\nu}(0) \left| K^{+}(p) \right\rangle = \left[4P_{\mu}P_{\nu} A(t) + (q^{\mu}q^{\nu} - g^{\mu\nu}q^{2}) D(t) \right]$$

 χPT result to O(p²) [Donoghue and Leutwyler, ZPC52 (1991)]

$$A(t) = 1 - 2 L_{12}^{r} \frac{t}{F^{2}}$$

$$GFF LECs: L_{11}, L_{12}, L_{13}$$

$$-D(t) = 1 + 2 \frac{t}{F^{2}} (4L_{11}^{4} + L_{12}^{r})$$

$$-16 \frac{m_{K}^{2}}{F^{2}} (L_{11}^{4} - L_{13}^{r}) + \frac{3t}{4F^{2}} I_{\pi}(t) + \frac{3t}{2F^{2}} I_{K}(t) + \frac{9t - 8m_{K}^{2}}{12F^{2}} I_{\eta}(t)$$

$$I(q^{2}) = \frac{1}{48\pi^{2}} \left[\ln \frac{\mu^{2}}{m^{2}} - 1 + \frac{q^{2}}{5m^{2}} \right] + \mathcal{O}(q^{4})$$

A and D have different sign but same normalization (-t=0) with meson mass correction [Donoghue and Leutwyler, ZPC52 (1991)]

$$A(0) + D(0) = \frac{16m_K^2}{F^2}(L_{11}^r - L_{13}^r) + \frac{m_K^2}{72\pi^2 F^2} \left[\ln \frac{\mu^2}{m_\eta^2} - 1 \right] + \dots \approx 0.77 \pm 0.15 \quad (\mu = m_\eta)$$
[Hudson and Schweitzer, Phys. Rev. D 96, 114013 (207)]

Leading Nc result in the quark model, magnitude is amplified by larger kaon mass (vs. A+D=0.03 for the pion)

Kaon gravitational form factors

	Values at -t=0	S	U	Total
4 ^u	A	0.54	0.45	0.99
A^s $-D^u$	-D	0.30	0.27	0.57

Comparison with other works

 A^{u}

 $A^{\overline{s}}$

 $-D^{\overline{s}}$

- ChPT: Donoghue and Leutwyler D(0) = -0.77 + -0.15
- Raya et al, LFWFs (2021), CPC 46 (2022) |Du(0)|=0.8 |Ds(0)|, but D(0)=-1?
- Y.-Z. Xu et al, DS-BS, D(0) = 0.77 & Du/Ds=0.8
- A_s/A_u is consistent with other works, Eg.) P. Hutauruk et al, NJL model, PRC 94 (2016)

Summary and outlook

Observations

We computed the Kaon valence-quark GPDs within the nonlocal chiral quark model Cross-over $x = \xi$ point is continuous but not smooth Light quark distribution presents stronger t-dependence than strange quark Gravitational form factors D^u/D^s ~ 0.9, D^{u+s} ~0.6 can be compared with the ChPT prediction ~0.77 Model results lack of the meson-loop contribution (10%) but have arbitrary order of m_K

<u>Tasks</u>

Detailed study on the kaon Sullivan-DVCS process in EIC Towards a description of the process from the model result: perturbative evolution, study of the CFFs

Why do we still rely on effective models? Model independent approaches Experiments, Lattice QCD, Effective theories (Large Nc QCD, ChPT, HQEFT) What we can learn from a model Complimentary study for experiment and lattice Initial state of the partons inside a hadron at low energy scale, insights via the effective degrees of freedom A sound effective model should be firmly planted to the first principle (symmetries), clear and understandable limitation not have too much free parameters (self-consistency)

eq. Instanton QCD vacuum

Nonlocal chiral quark model from the Instanton QCD-vacuum

Tunneling amplitude between the minima

Classical path between the apexes

Classical solution minimizes the Euclidean YM's action

 $F = \tilde{F}$

Spatial distribution of the instanton is characterized by

 $\bar{\rho} \approx 0.5 / \Lambda_{\overline{MS}}$ $\bar{R} \approx 1.35 / \Lambda_{\overline{MS}}$

Diluteness is assumed

the topological structure of QCD

Nonlocal chiral quark model from the Instanton QCD-vacuum

Tunneling amplitude between the minima

Classical path between the apexes

Classical solution minimizes the Euclidean YM's action

 $F = \tilde{F}$

Spatial distribution of the instanton is characterized by

 $\bar{\rho} \approx 0.5 / \Lambda_{\overline{MS}}$ $\bar{R} \approx 1.35 / \Lambda_{\overline{MS}}$

Diluteness is assumed

Kaon light-cone distribution amplitude

Quark GPDs for Kaon

Singlet generalized quark distributions in the kaon

$$\frac{1}{2} \int \frac{d\lambda}{2\pi} \exp\left(i\lambda xn \cdot \bar{P}\right) \langle K^+(p')| \left\{ \begin{array}{l} \bar{u}(-\lambda n/2) \not n u(\lambda n/2) \\ \bar{s}(-\lambda n/2) \not n s(\lambda n/2) \end{array} \right\} |K^+(p)\rangle = \left\{ \begin{array}{l} H^{u/K^+}(x,\xi,t) \\ -H^{\bar{s}/K^+}(-x,\xi,t) \end{array} \right\}$$
(3.1)

Symmetry properties

$$H^{u/K^+}(x,\xi,t) = H^{u/K^+}(x,-\xi,t) = -H^{u/K^+}(-x,\xi,t)$$

Mellin moments n=0

$$\int_{-1}^{+1} dx \ H^{u/K^+}(x,\xi,t) = A_{10}^{u/K^+}(t)$$
$$\int_{-1}^{+1} dx \ H^{\bar{s}/K^+}(x,\xi,t) = A_{10}^{\bar{s}/K^+}(t).$$

$$e_u A_{10}^{u/K^+}(t) + e_{\bar{s}} A_{10}^{\bar{s}/K^+}(t) = F_{K^+}(t)$$

(2.3)

Quark GPDs for Kaon

Singlet generalized quark distributions in the kaon

$$\frac{1}{2} \int \frac{d\lambda}{2\pi} \exp\left(i\lambda xn \cdot \bar{P}\right) \langle K^+(p')| \left\{ \begin{array}{l} \bar{u}(-\lambda n/2) \not n u(\lambda n/2) \\ \bar{s}(-\lambda n/2) \not n s(\lambda n/2) \end{array} \right\} |K^+(p)\rangle = \left\{ \begin{array}{l} H^{u/K^+}(x,\xi,t) \\ -H^{\bar{s}/K^+}(-x,\xi,t) \end{array} \right\}$$
(3.1)

Zero momentum transfer of the target hadron \rightarrow Parton distribution functions

$$H^q(x, 0, 0) = f_1(x)$$
 Unpolarized quark distribution

Mellin moments n=0

$$\int_{-1}^{+1} dx \ H^{u/K^+}(x,\xi,t) = A_{10}^{u/K^+}(t)$$
$$\int_{-1}^{+1} dx \ H^{\bar{s}/K^+}(x,\xi,t) = A_{10}^{\bar{s}/K^+}(t).$$

$$e_u A_{10}^{u/K^+}(t) + e_{\bar{s}} A_{10}^{\bar{s}/K^+}(t) = F_{K^+}(t)$$

(2.3)

Quark GPDs for Kaon

Singlet generalized quark distributions in the kaon

$$\frac{1}{2} \int \frac{d\lambda}{2\pi} \exp\left(i\lambda xn \cdot \bar{P}\right) \langle K^+(p')| \left\{ \begin{array}{l} \bar{u}(-\lambda n/2) \not n u(\lambda n/2) \\ \bar{s}(-\lambda n/2) \not n s(\lambda n/2) \end{array} \right\} |K^+(p)\rangle = \left\{ \begin{array}{l} H^{u/K^+}(x,\xi,t) \\ -H^{\bar{s}/K^+}(-x,\xi,t) \end{array} \right\}$$
(3.1)

Mellin moments n=1

$$\int_{-1}^{+1} dxx \ H^{u/K^+}(x,\xi,t) = A_{20}^{u/K^+}(t) + \xi^2 A_{22}^{u/K^+}(t),$$

$$\int_{-1}^{+1} dxx \ H^{\bar{s}/K^+}(x,\xi,t) = A_{20}^{\bar{s}/K^+}(t) + \xi^2 A_{22}^{\bar{s}/K^+}(t).$$
(2.5)

Momentum sum-rule

$$A_{20}^{u/K^+}(0) + A_{20}^{\bar{s}/K^+}(0) = M_2^{val}$$

A20 and A22 proportional to the gravitational form factors!

A20: mass distribution, A

A22: pressure and shear distribution, D

QCD energy-momentum tensor operator

 $\hat{T}^a_{\mu\nu}$: QCD energy-momentum tensor operator (a: quarks and gluon), symmetric, gauge-invariant

Quark

$$\hat{T}_{q}^{\mu\nu} = \frac{1}{4} \bar{\psi}_{q} \left(-i\overleftarrow{\mathcal{D}}^{\mu}\gamma^{\nu} - i\overleftarrow{\mathcal{D}}^{\nu}\gamma^{\mu} + i\overrightarrow{\mathcal{D}}^{\mu}\gamma^{\nu} + i\overrightarrow{\mathcal{D}}^{\nu}\gamma^{\mu} \right) \psi_{q} - \eta^{\mu\nu}\bar{\psi}_{q} (i\overleftarrow{\mathcal{D}}/2 - m_{q})\psi_{q}$$
Gluon

$$\hat{T}_{g}^{\mu\nu} = -F^{\mu\alpha}F_{\alpha}^{\nu} + \frac{1}{4}\eta^{\mu\nu}F^{\alpha\beta}F_{\alpha\beta}$$

Symmetric ($\mu \leftrightarrow \nu$), gauge invariant (not in the canonical derivation) Not conserved separately (renormalization scale dependent), but total operator $\hat{T}^{\mu\nu} = \hat{T}^{\mu\nu}_{a} + \hat{T}^{\mu\nu}_{g}$ is conserved Trace anomaly: the renormalized operator $\hat{T}^{\mu}_{\ \mu} = \frac{\beta(g)}{2g}F^2 + (1 + \gamma_m)m\bar{\psi}\psi$ non-vanishing in the chiral limit Mass decomposition $2M^2 = \langle P | \frac{\beta(g)}{2g}F^2 | P \rangle + \langle P | (1 + \gamma_m)\bar{\psi}m\psi | P \rangle$

Kaon GPD ($x = \xi$)

Quark GPDs along the cross-over line ($x = \xi$)

~ Imaginary part of the Compton form factor

$-t = (0.01, 0.1, 0.25, 0.5, 0.75, 1) \text{ GeV}^2$

Solid lines: u-quark Dotted lines: anti s-quark

-	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	1
	1
	_
	_
	_
	-
	-
	-
	-
	-
	-
	-
	-
	-
	1
	1
	_
	\cap
	5.し)

Example) Pion GPD evolution (isoscalar I=0, see red-dashed curves)

FIG. 4. Half-off-shell pion GPDs at $\xi = 0.5$ for (a) t = 0and (b) $t = -0.1 \text{ GeV}^2$, evaluated in the chiral limit in SQM at the quark model scale for several values of the off-shell parameter p^2 .

FIG. 5. Half-offshell pion GPD for t = 0 at $\xi = 0.5$ and $\xi = 0.15$, evolved to $Q^2 = 4 \text{ GeV}^2$ with LO DGLAP-ERBL equations.

- Decreasing GPD at $x = \xi$, as -t larger
- Evolution leading an enhancement at $x = \xi$, especially at small x, possibly due to the gluon and sea quarks
- Nb. LO calculation, could be not enough
- Similar tendency in more realistic picture

(current study & NLO)?

