Prospects of the EIC India group

Shuddha On behalf of EIC India group

Outline

- EIC India Collaboration and interest
- RICH (Radiator Studies and SiPM)
- Calorimeter experience
- AC LGAD test setup
- Software Interests
- Conclusion

Indian Institutes interested in ePIC at EIC

Indian Interest in ePIC

EIC ePIC Barrel Detector

- Calorimetry
- Particle ID
 - ToF: LGAD
 - dRICH: Radiator characterization and SiPMs
- DAQ/DCS and Slow Control Software
- Simulation studies

dRICH Requirements

• Requirements

- Wide acceptance: $(1.5 < |\eta| \le 3.5)$
- High momentum coverage: upto 50 GeV/c π K separation.
- Dual Radiator RICH: (Aerogel n~1.02 + C₂F₆ gas n~1.0008)
- Large photo sensor surface to be covered in magnetic field.
 - Choice of Photo Sensor is SiPMs due to more number of detected photons.

Our Interests

- 1. Aerogel characterization
 - I. Study of refractive index uniformity.
 - II. Transmittance and reflectance studies.
 - III. Raleigh scattering in UV domain, chromaticity.
 - IV. Aging effects due to water absorption: difference in response between different size and thickness of aerogel blocks.
- 2. SiPM characterizations
 - I. PDE (normal value ~ 40%).
 - II. Dark count Suppression.
 - III. Timing studies.
- 3. Simulation studies.

Typical Aerogel Characterization Setup

- This setup has synergies with ALICE3 pfRICH Aerogel characterization activities.
- Setup is ongoing. It will be ready in the 1.5-year timeline.

SiPMs in India

Two semiconductor fabs in India

Semiconductor Lab (SCL) in Chandigarh, Punjab

आरत इलेक्ट्रॉनिक्स BHARAT ELECTRONICS

Bharat Electronics Ltd. (BEL) in Bengaluru, Karnataka

Not to scale

Back

C10

DET

SCL sample (epi., p-type)

Front

SiPMs in India

Sr.	Parameter (targeted by design)	Specifications			
No		BARC/SCL	SCL	BEL	
1	Effective active area (mm ²)	1.5 x 1.5 & 3 x3	1.5 x 1.5	1.5 x 1.5 3.3 x 3.3	
2	Micro-cell count	676 & 2704	1156	4836	
3	Micro-cell size	50 x 50 µm ²	35 x 35 µm ²		
4	Micro-cell fill factor	20% & 75%	61%	55%	
5	Capacitance (Cathode - anode)	1000 pF	~330 pF ~100pF/cell and (500 pF @25.5V)		
6	Recharge time constant	120 ns – 150 ns	is		
7	Spectral response range	350 nm – 900 nm	-	350 nm – 900 nm	
8	Peak sensitivity wavelength	~ 500 nm	-	420 – 450 nm	
9	Photon detection efficiency	-	-	-	
10	Breakdown voltage (V_{BD})	22 V	18 V	23 V	
11	Overvoltage range (OV)	2 V – 3 V	2.5 V	2 V – 5 V	
12	Dark count rate	~ 500 kHz (@ V _{BD} +2.0 V and 0.5 p.e. thr.	20 Hz/ μm ² at 1V OV	-	
13	Gain	2 x 10 ⁶ @ V _{BD} +1V	~ 10 ⁶	~5.2 x 10 ⁵ @V _{BD} +2V	
14	V_{BR} temp. coefficient	20.0 mV/ %	15.0 mV/%C	-	
15	Package type	LCC* 16, 20 pin	TO-8/6 pin	On PCB	
16	Package dimension	~ 3.5 x 3.5 mm ²			
17	Dark current	< 5 nA/cm ² @ 20V	$< 10 \text{ nA/cm}^2$	-	
18	Quenching resistor (Rg)	300-500 <mark>kΩ</mark>	360 <mark>kΩ</mark>	$R_{sq} = 6.6 \text{ k}\Omega$ and $R_{sq} = \sim 32 \text{ M}\Omega$	
19	Cross-talk	< 5 % @VBD+2.0 V	-	-	

รเ	Sensitive area – 3 $mm imes$ 3 mm , Pixel size – 50 $\mu m imes$ 50 μm				
No.	Properties	On Semiconductor C – Series 30050	SCL Sample		
1	Breakdown Voltage	24.2 V	22.0 V		
2	No of Pixels	2668	2704		
3	Fill factor	72%	75%		
4	Gain	$6 \times 10^6 @ V_{BD} = +2.5 V$	$\sim 2 \times 10^6 @ V_{BD} = +1.0 V$		
5	Temperature dependence of $V_{\mbox{\scriptsize BD}}$	21.5 mV/°C	20.0 mV/°C		
6	Capacitance (Cathode - Anode)	920 pF	1000 pF		
7	Dark count rate	(a) $V_{BD} = +2.5 V$ Typ. 300 kHz	(a) $V_{BD} = +2.0 V$ Typ. 500 kHz		
8	Cross Talk	$@V_{BD} = +2.5 V 10\%$	$@V_{BD} = +2.0 V < 5\%$		

• Specifications are similar to some commercially available SiPMs

SiPM test setup at NISER

Test setup @ NISER: Few channels Preamp (cremat 110) and Shaping amplifier (cremat 200) with shaping time 100 ns

CAEN Digitizer (DT5730) 8 ch, 14 bit resolution, 500 MS/s sampling rate, 2Vpp dynamic range With DPP firmware 26

Detector bias supply (Keithley 2470 SMU)

SiPM inside the detector box

LED Driver available at NISER

SP5601 LED Driver Request a quot Manua L Downloads

Features

- Pulse width: 8 ns
- LED color: violet (400 nm) 1500 mcd
- Pulse generator: internal/external
- Optical output connectors: FC
- Optical fiber included
- Dimension: 79 x 42 x 102 mm³ (WxHxD

Cremat fast preamp order in process

either in a direct coupled (DC) node or an AC coupled mode If the detector current exceeds

CAEN PETIROC based DAQ

- PETIROC-based test setup is at NISER
- CITIROC DAQ is under procurement

SiPM test results:

BEL Sample

- SiPM fabricated in CMOS 180 nm process
- SiPM was mounted on DIP package
 - Pixel size: $35 \times 35 \ \mu m^2$;
 - Effective area: $3 \times 3 mm^2$;
 - No. Of Cells: 4836;
 - Fill Factor: 55%; and
 - Breakdown voltage: $\sim 23 V$;

- Connected in Reverse bias mode
- Reverse voltage applied using Keithley 2470
 - Sweep: 0 to 26 V with (0.25 V step)

SiPM test results:

SCL Sample

- SiPM fabricated in CMOS 180 nm process
- SiPM was mounted on DIP package
 - Pixel size: $35 \times 35 \ \mu m^2$;
 - Effective area: $1.5 \times 1.5 mm^2$;
 - No. Of Cells: 1156;
 - Fill Factor: 61%; and
 - Breakdown voltage: ~17.5 *V*;

SiPM sample on DIP

- Connected in Reverse bias mode
- Reverse voltage applied using Keithly 2470
 - Sweep: 0 to 20 V with (0.5 V step)

SiPM in India: Future Setup

- Photo Detection Efficiency (PDE) measurement setup under preparation.
- New designs and ideas are under way as this work is in synergies with ALICE3 barrel pfRICH activities.

Possible SiPM characterization setup

Si PAD Array detector in India

- India is currently part of Alice FOCAL ٠ upgrade and developing Si PAD Array detectors.
- Currently n type 8×9 Si pad arrays are fabricated in BEL, Bengaluru, India and has been tested in the lab and in Test Beam facility at CERN

weight and keep it overnight

Si pad array detector readout printed circuit board fabricated by Micropack Private Limited, Bangalore, India

- Wafers glued to PCB
 - Used automated wire bonding (~250 wire bonds per detector)
 - The jig was kept at 90 degree C while wire bonding

Si PAD Array detector in India: Lab tests at NISER

Alice FoCAL test beam at CERN PS T9

6 days beam time: (11.10.2023 to 18.10.2023)

- 5 GeV, 10 GeV and 15 GeV pion(-ve) runs to record MIP response
- Position Scan of each pad element of pad array and Bias voltage scan
- 1-5 GeV (step of 1) e- beam with Cherenkov trigger 6 to ۲ 1 tungsten plates to measure electron

25000

20000

10000

5000

20

40

Events 15000

AC – LGADs test setup preparation

- Interested to contribute mostly to test and characterization work of AC-LGADs and readout ASIC (EICROC)
- Plan to purchase test equipment such as,
 - Zynq evaluation board (ZC706), Picosecond laser, high-precision oscilloscope (e.g. LeCroy 9404M-MS 4 GHz, 40 GS/s)
- Earlier experience:
 - SAMPA readout chip for ALICE TPC
 - HGCROCv2 ASIC for ALICE FoCal

Computer DAQ board (Zynq SoC ZC706)

DAQ/DCS Slow Control contribution

Crucial input to the DAQ team: Background rates of each detector arising out of various sources. **Used for:** Calculating data volumes and corresponding bandwidths

CUK: Estimation of background rates due to synchrotron radiation

Ran simulation for two different setups (with gold and without gold coating) and analyzed the photon and electron counts for a specific beam current.

Results were used in ATHENA white paper to calculate maximum data

Adam, J., et al. Journal of Instrumentation 17, P10019 (2022)

Table 7: Maximum data volume by detector.

Detector	Channels	DAQ Input (Gbps)	DAQ Output (Gbps)
B0 Si	400M	<1	<1
B0 AC-LGAD	500k	<1	<1
RP+OMD+ZDC	700k	<1	<1
FB Cal	4k	80	1
ECal	34k	5	5
HCal	39k	5.5	5.5
Imaging bECal	619M	4	4
Si Tracking	60B	5	5
Micromegas Tracking	66k	2.6	.6
GEM Tracking	28k	2.4	.5
µRWELL Tracking	50k	2.4	.5
dRICH	300k	1830	14
pfRICH	225k	1380	12
DIRC	100k	11	11
TOF	332k	3	.8
Total		3334	62.9

Software/Simulation contribution

Task: Evaluate the vertexing algorithm performance of ePIC

- Strategy:
 - Few-track simulation, check single track performances (resolution, efficiency, DCA), then move away from (0,0) in (x,y)
- Simulation details:
 - PYTHIA DIS simulation, starting from (0,0,0)
 - Simulated 2000 events:
 - Electron Beam Energy = 18 GeV
 - Proton Beam Energy = 275 GeV
 - $Q_{Min}^2 = 10 GeV^2$ With Neutral Current

Vertex resolution vs. no. of reconstructed tracks

220

200F

160

140F

120 100

80

Suggestions from ePIC management

- Recently (last week), we received some suggestions from ePIC managements about possible participation topics:
 - Forward EM Calorimeter.
 - AC LGAD assembly and test facilities for Forward ToF.
 - dRICH studies.
 - Software for streaming DAQ studies.
- We are discussing within EIC India about the possible contributions.

Summary

- Thanks to DAE, DST, and the EIC community for their support.
- EIC India group interests in hardware and software are being defined.
- The funding proposal is in progress.
- The interests are
 - dRICH aerogel characterization
 - SiPM studies for dRICH and Forward EM Calorimeter
 - DAQ/DCS
 - Software and Simulation studies