Recent results at the LHC on polarization and spin alignment

Sanghoon Lim Pusan National University

Time: 0 fm/*c*

~10 fm/c

Time: 0 fm/*c*

Effects from the strong EM field

Effects from the strong EM field

- The decay time of the magnetic field is related to the conductivity of the QGP!
- Charge-dependent directed flow can be used to calibrate the strength and duration of the magnetic field

Effects from the strong EM field

- The decay time of the magnetic field is related to the conductivity of the QGP!
- Charge-dependent directed flow can be used to calibrate the strength and duration of the magnetic field

Pb-Pb 2.76 TeV $p_T = 0.25, 0.5, 1.0 \text{ GeV}/c^2$

 π

Measurement of directed flow

$$\begin{split} \boldsymbol{v}_{1}\{\boldsymbol{\Psi}_{\mathrm{SP}}^{p}\} &= \frac{1}{\sqrt{2}} \Bigg[\frac{\langle \boldsymbol{u}_{x} \boldsymbol{Q}_{x}^{p} \rangle}{\sqrt{|\langle \boldsymbol{Q}_{x}^{t} \boldsymbol{Q}_{x}^{p} \rangle|}} + \frac{\langle \boldsymbol{u}_{y} \boldsymbol{Q}_{y}^{p} \rangle}{\sqrt{|\langle \boldsymbol{Q}_{y}^{t} \boldsymbol{Q}_{y}^{p} \rangle|}} \Bigg],\\ \boldsymbol{v}_{1}\{\boldsymbol{\Psi}_{\mathrm{SP}}^{t}\} &= -\frac{1}{\sqrt{2}} \Bigg[\frac{\langle \boldsymbol{u}_{x} \boldsymbol{Q}_{x}^{t} \rangle}{\sqrt{|\langle \boldsymbol{Q}_{x}^{t} \boldsymbol{Q}_{x}^{p} \rangle|}} + \frac{\langle \boldsymbol{u}_{y} \boldsymbol{Q}_{y}^{p} \rangle}{\sqrt{|\langle \boldsymbol{Q}_{y}^{t} \boldsymbol{Q}_{y}^{p} \rangle|}} \Bigg],\\ \boldsymbol{v}_{1}^{\mathrm{odd}}\{\boldsymbol{\Psi}_{\mathrm{SP}}\} &= [\boldsymbol{v}_{1}\{\boldsymbol{\Psi}_{\mathrm{SP}}^{p}\} + \boldsymbol{v}_{1}\{\boldsymbol{\Psi}_{\mathrm{SP}}^{t}\}]/2\\ \boldsymbol{v}_{1}^{\mathrm{even}}\{\boldsymbol{\Psi}_{\mathrm{SP}}\} &= [\boldsymbol{v}_{1}\{\boldsymbol{\Psi}_{\mathrm{SP}}^{p}\} - \boldsymbol{v}_{1}\{\boldsymbol{\Psi}_{\mathrm{SP}}^{t}\}]/2. \end{split}$$

- Proxy of the reaction plane:
 Direction of the spectator neutron
 →spectator plane
- The energy of spectator neutrons is measured with Zero-Degree Calorimeters

Measurement of directed flow

 Vorticity (tilt) due to asymmetric initial velocity generates directed flow

Measurement of directed flow

- Vorticity (tilt) due to asymmetric initial velocity generates directed flow
- Significantly smaller magnitude than RHIC energies

- The formation time of the charm quark is about 0.1 fm/c
 When the magnetic field is maximum
- Directed flow of charm hadrons is expected to be larger than light hadrons

• The formation time of the charm quark is about 0.1 fm/c

 \rightarrow When the magnetic field is maximum

• Shifted from the bulk

→Enhance dipole asymmetry resulting in a larger directed flow

- Much larger v₁ signal for D mesons than light hadrons
- Opposite rapidity dependence between D^0 and \overline{D}^0

 $M(K^{-}\pi^{+})$ (GeV/ c^{2})

PRL 125, 022301 (2020)

-0.5

0.5

— – AMPT

0.5

Parity violating weak decay: Daughter baryon is preferentially emitted in the direction of hyperon spin

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha_{\rm H} \mathbf{P}_{\rm H} \cdot \mathbf{p}_{\mathbf{p}}^*)$$

P_H: Λ polarization p_p*: proton momentum in the Λ rest frame α_{H} : Λ decay parameter ($\alpha_{\Lambda} = -\alpha_{\Lambda} = 0.642 \pm 0.013$)

$$\Lambda \rightarrow p + \pi^- \label{eq:relation}$$
 (BR: 63.9%, c τ ~7.9 cm)

- Polarization measurement:
 - Take a projection of the daughter proton's momentum direction on the reference axis

 Ψ_1 : azimuthal angle of the impact parameter ϕ_{p}^* : ϕ of daughter proton in Λ rest frame

• \vec{P}_{beam} = momentum of the projectile (moving toward positive rapidity: known)

- \vec{b} = Impact parameter
- Ψ_{SP} = spectator plane angle (azimuthal angle of \vec{b}).
- φ_p^* = azimuthal angle of daughter proton in $\Lambda(\bar{\Lambda})$ rest frame
- $R_{\rm SP}^1$ = Resolution of $\Psi_{\rm SP}$

$\sqrt{s_{NN}}$	Centrality	P_{Λ} (%)	$P_{\overline{\Lambda}}$ (%)
2.76 TeV	5–15% 15–50%	$0.01 \pm 0.13 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$ $0.08 \pm 0.10 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$	$0.09 \pm 0.13 \text{ (stat.)} \pm 0.08 \text{ (syst.)} -0.05 \pm 0.10 \text{ (stat.)} \pm 0.03 \text{ (syst.)}$
5.02 TeV	5–15% 15–50%	$0.08 \pm 0.18 \text{ (stat.)} \pm 0.08 \text{ (syst.)}$ -0.13 ± 0.11 (stat.) ± 0.04 (syst.)	-0.07 ± 0.18 (stat.) ± 0.03 (syst.) 0.14 ± 0.12 (stat.) ± 0.03 (syst.)
Average	15-50%	$\langle P_H angle (\%) pprox 0.01 \pm 0.06 \; ({ m stat.}) \pm 0.03 \; ({ m syst.})$	

PRC 101, 044611 (2020)

in hyperon rest frame

 $\Lambda \rightarrow p + \pi^{-}$

(BR: 63.9%, c *τ* ~7.9 cm)

 \vec{p}_p

Х

• P_{z,s2} (polarization along the beam axis) is similar between 200 GeV and 5.02 TeV

- Blast-Wave model describe the $P_{z,s2}$ data
- Hydro and AMPT models, which can describe collective flow, show negative P_{z,s2}

PRL 123, 132301 (2019)

 The AMPT+MUSIC-based model with fluid shear + thermal vorticity show a positive P_{z,s2} in case of inheriting the spin information from the strange quark

Vector meson spin alignment

• Spin alignment of vector mesons (decay products) to the reference axis

$$W(\cos\theta) \propto (1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta$$

 ho_{00} = spin density matrix element $ho_{00} = 1/3$ no spin alignment

In quarkonia analyses:

$$W(\cos\theta,\phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta+\cdots)$$

 $\lambda_{\theta} = \text{polarization parameter}$ $\lambda_{\theta} = 0$ no spin alignment $=\frac{1-3\rho_{00}}{1+\rho_{00}}$

Reaction plane:

Axis orthogonal to the reaction plane in the center-of-mass frame

Helicity frame: Direction of vector meson in the center-of-mass frame

Spin-orbit angular momentum interaction in HIC

$$\frac{dN}{d\cos\theta^*} \propto \left[1 - \rho_{00} + \cos^2\theta^* (3\rho_{00} - 1)\right]$$

Physics process	Theory	Remarks	Reference
Vorticity (ω)	$\rho_{00}(\omega) < 1/3$	$\rho_{00}(\omega) \sim \frac{1}{3} - \frac{1}{9}(\beta \omega)^2$	F. Becattini et al., Phys. Rev. C 95 (2017) 054902
Magnetic field (B)	$\begin{aligned} \rho_{00}(\mathrm{B}) &> 1/3 \\ &\sim \frac{1}{3} - \frac{1}{9}\beta \frac{q_1 q_2}{m_1 m_2} \mathrm{B}^2 \\ \rho_{00}(\mathrm{B}) &< 1/3 \end{aligned}$	Electrically neutral vector mesons Electrically charged vector mesons	Y. Yang et. al., Phys. Rev. C 97 (2018) 034917
Hadronization	$ \begin{split} &\rho_{00}(\text{rec}) < 1/3 \\ &\sim \frac{1 - P_q P_q}{3 + P_q P_q} \\ &\rho_{00}(\text{frag}) > 1/3 \\ &\sim \frac{1 + \beta P_q P_q}{3 - \beta P_q P_q} \end{split} $	Recombination Fragmentation	Z. Liang et. al., Phys. Lett. B 629 (2005) 20 (2005) Z. Liang and X. N. Wang Phys.Rev.Lett. 94 (2005) 102301
Coherent meson field	$\rho_{00} > 1/3$	φ mesons	X. L. Sheng et. al., arXiv:1910.13684

Vector meson spin alignment: K^{*0} , ϕ

- Spin alignment for K*0 and $oldsymbol{\phi}$ at low p_{T}
- No spin alignment for K_{S}^{0}
- No spin alignment with random plane
- No spin alignment in pp collisions

- Maximum effect in mid-central Pb-Pb collisions
- No spin alignment for high p_T at the entire centrality ranges

- Measurement of D*+ polarization with respect to the reaction plane
- ML technique to reduce background and non-prompt (B decay) contribution

ho_{00} 1.0 0.6-ALICE |y| < 0.8LHCb data 7 TeV 0.8 pp, $\sqrt{s} = 13 \text{ TeV}$ ALICE data 7 TeV (inclusive J/ψ) 0.6 ALICE data 8 TeV (inclusive J/ψ) 0.5 CGC+NRQCD 0.4 0.2 λ_{θ} 0.4 0.0 -0.2 0.3 -0.4 PYTHIA 8 + EVTGEN Data c → D*⁺ $c \rightarrow D^{\star +}$ -0.6 0.2 2.5 < y < 4, $\sqrt{S} = 7$ or 8 TeV $b \rightarrow D^{*+}$ • $b \rightarrow D^{*+}$ -0.8 recoil (helicity) frame -1.0 8 10 12 14 16 2 6 12 20 n 6 8 10 14 16 18 $p_{\rm T} ({\rm GeV}/c)$ p_⊤ [GeV] PRL 108, 082001 (2012) ALI-PUB-532032 EJPC 78 (2018) 562 EPJC 73 (2013) 11

Vector meson spin alignment: D^{*+} , J/ψ

• Results in pp collisions agree with zero polarization

JHEP 12 (2017) 110

Vector meson spin alignment: D*+, J/ ψ

Low p_T : $\rho_{00} < 1/3$ for J/ ψ can be explained by recombination

High p_T:

 $ho_{00} < 1/3$ for D*+ can be explained by fragmentation

Summary

BACKUP