Heavy Quarkonium Production and Polarization in Small Systems

Kazuhiro Watanabe (Seikei University)

ExHIC-p workshop on polarization phenomena in nuclear collisions March 15, 2024, Academia Sinica

Outline: I. Background: Quarkonium production models II. Hadronic quarkonium production of high p_T and low p_T III. Forward production and nuclear effects

Quarkonia as tools

p+p collisions (Small systems)

Elementary quarkonium production mechanism

p/d/He+A collisions (Small systems)

- Cold Nuclear Matter effects (nPDFs, energy loss, saturation, multiple-scattering, ...)
- The nuclear medium, as a filter, diagnoses the quarkonium production mechanism.

A+A collisions (Large systems)

- Quarkonium dissociation, regeneration, collectivity.
- The space-time evolution of quarkonium formation involves various QCD and QED effects.

Quarkonium production in small systems (pp, pA) gives essential inputs for discussion of the QCD medium effect!

Hadronic quarkonium production: at a glance

The p_T spectrum can be modified by cold nuclear effects.

TMD factorization + CEM or NRQCD

Berger, Qiu and Wang, PRD 71, 034007 (2005) Sun, Yuan and Yuan, PRD88, 054008 (2013)

CGC framework + CEM or NRQCD (forward)

Ma, Venugopalan, PRL113, 19, 192301 (2014) **KW**, Xiao, PRD92, 11, 111502 (2015)

(II) NRQCD factorization

• • •

Butenschoen, Kniehl, PRD84, 051501 (2011) Chao, Ma, Shao, Wang, Zhang, PRL108, 242004 (2012) Gong, Wan, Wang, Zhang, PRL110, 042002 (2013)

(III) QCD factorization w/ Fragmentation Functions

Kang, Qiu and Sterman, PRL108, 102002 (2012) Bodwin, Chung, Kim, Lee, PRL113, 022001 (2014)

Ma, Qiu, Sterman, Zhang, PRL113, 14, 142002 (2014)

Need to choose a proper framework to explore QCD medium effects precisely!

I. Background: Quarkonium production models

Inclusive direct production of S-wave quarkonium will be considered.

Mass (MeV)

 $J^{PC} = 0^{-+}$ 1++ 1--1+ - 0^{++}

Scales in heavy quarkonium production (1/2)

Perturbative

- $\sim m$ Hard: production of $Q\bar{Q}$ [pQ
- $\sim mv$ Soft: relative momentum [NF
- $\sim \Lambda_{\text{QCD}} \sim mv^2$ Ultra-soft: binding energy [p] **Non-Perturbative**
 - 'Heavy' quark mass, $m \gg \Lambda_{\rm OCD}$, makes perturbation theory more reliable.
 - Nonrelativistic system in the quarkonium rest frame with heavy quark velocity: $v^2 \sim 0.3 \ (c\bar{c}), \ v^2 \sim 0.1 \ (b\bar{b}).$
 - Well separated momentum scales, $m \gg mv \gg mv^2$, result in effective theory.

Quarkonium, the bound state of a heavy quark and antiquark pair (QQ), involves multi-scale.

data from PDG

	Flavor	Mass	
	u	~ 2 - 2.5 MeV	
	d	~ 4.5 - 5 MeV	
ROCDI	S	~ 90 - 100 MeV	
	С	~ 1.25 - 1.3 GeV	
	b	~ 4.15 - 4.2 GeV	
NKQCD	t	~ 173 GeV	

Scales in heavy quarkonium production (2/2)

Quarkonium's momentum (p_T , p_z) is crucial to pin down the production mechanism!

proton-proton (pp) collision

Emergence of a heavy quarkonium and factorization

Factorization between $Q\bar{Q}$ production and nonperturbative bound state formation:

hard part, involving PDFs

$$d\sigma_{A+B\to\psi+X} = \sum_{n} \int dq^2 d\hat{\sigma}_{A+B\to Q\bar{Q}[n]+X}$$

n: quantum states of the pair

- Interactions between $Q\bar{Q}$ and soft partons can be suppressed by powers of 1/M.
- $Q\bar{Q}$ could suffer from spectator interactions, suppressed by powers of $1/p_T$ or $1/p_z$.
- If the relative momentum $q^2 = (p_Q p_{\bar{Q}})^2$ is large enough, radiative soft gluons could break factorization.

 $_X(M^2,q^2) \, F_{Q\bar{Q}[n] \to \psi}(q^2)$

transition distribution

 $\left(\frac{q^2}{M^2}\right)$

power corrections

Modern approaches for the bound state formation (1/2)

1. Color Evaporation Model: useful for phenomenology, but the long distance part is blinded.

$$d\sigma_{\psi} \approx F_{\psi} \int_{0}^{(2M_D)^2 - (2m)^2} dq^2 d\hat{\sigma}_{Q\bar{Q}}(q^2)$$

2. Color Singlet Model (direct production at the early stage) $d\sigma_{\psi} \approx d\hat{\sigma}_{Q\bar{Q}}(q^2 = 0) \int dq^2 F_{\psi}(q^2) = |\Psi(0)|^2 d\hat{\sigma}_{Q\bar{Q}}$

 $F_{\mu\nu}(q^2)$ should be peaked at $q^2 = 0$, and its moment is the square of the wave-function at origin.

Modern approaches for the bound state formation

3. NRQCD factorization approach: CS + CO contributions.

$$d\sigma_{\psi} \approx \sum_{n} \int dq^{2} F_{Q\bar{Q}[n] \to \psi}(q^{2}) \sum_{m} \frac{[q^{2}]^{m}}{m!} \frac{d^{m} d\sigma_{A+B \to Q\bar{Q}[n]}}{d^{m}q^{2}}$$
$$= \sum_{n,m} \frac{d^{m} d\hat{\sigma}_{A+B \to Q\bar{Q}[n]+X}(M^{2}, q^{2})}{d^{m}q^{2}} \Big|_{q^{2}=0} \int dq^{2} \frac{[q^{2}]^{m}}{m!} H$$
$$\approx \sum_{\kappa} d\hat{\sigma}_{Q\bar{Q}[\kappa]}(q^{2}=0) \langle \mathcal{O}_{Q\bar{Q}[\kappa] \to \psi} \rangle$$

Long-Distance Matrix Elements (LDMEs), $\langle \mathcal{O}_{O\bar{O}[\kappa]} \rangle$, are infinite**parameters** and organized by the power of the quark velocity $v^2 \sim q_T^2 / m^2 < 1$ and α_s :

4-leading channels $\kappa = {}^{3}S_{1}^{[1]}, {}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{I}^{[8]}$ with J = 0, 1, 2

4. Fragmentation Function approach only at high p_T ($\gg m$). ſ

$$d\sigma_{\psi} \approx \sum_{i} \int dz D_{i \to \psi}(z) \, d\hat{\sigma}_{i}(z)$$

Braaten, Doncheski, Fleming and Mangano, PLB333, 548 (1994) Cacciari and Greco, PRL73, 1586 (1994) Braaten and Fleming, PRL74, 3327 (1995)

Polarization of quarkonium: a crucial observable

The production rate is not very sensitive to the details of hadronization

 \rightarrow Other observables or scales are needed.

$$\begin{split} \frac{d\sigma^{J/\psi(\rightarrow l^+l^-)}}{d\Omega} \propto 1 + \lambda_{\theta}\cos^2\theta \\ &+ \lambda_{\phi}\sin^2\theta\cos 2\phi + \lambda_{\theta\phi}\sin 2\theta\cos \theta \\ \\ &\text{Transverse pol.: } \lambda_{\theta} = + 1 \text{ (photon-like)} \\ \\ &\text{Longitudinal pol.: } \lambda_{\theta} = -1 \\ \\ &\text{Unpolarized: } \lambda_{\theta} = 0 \end{split}$$

The decay reference frame is not unique.

HX: Helicity frame (particle's direction)

GJ: Gottfried-Jackson frame (b1)

CS: Collins-Soper frame (bisector btw b1 and -b2) 11

Polarization in NRQCD at NLO

- can be negative: cancellations between different intermediate states happen.

Chao, Ma, Shao, Wang, Zhang, PRL108, 242004 (2012)

• NB: transverse components of hard parts in the NRQCD for producing QQ in P-state

• The simultaneous description of both the p_T spectrum and polarization is an issue yet.

II-1. Hadronic quarkonium production of high p_T

Importance of higher order corrections at high p_T (1/2)

• At LO in CSM:
$$d\sigma(Q\bar{Q}[{}^3S_1^{[1]}]) \propto \frac{\alpha_s^3 m^4}{p_T^8}$$

- At high p_T higher order corrections must be essential: $d\sigma(Q\bar{Q}[{}^{3}S_{1}^{[1]}]) \propto \frac{\alpha_{s}^{3}m^{4}}{p_{T}^{8}} \times \frac{\alpha_{s}p_{T}^{2}}{m^{2}} = \frac{\alpha_{s}^{4}m^{2}}{p_{T}^{6}}$
- The gluon jet fragmentation at high p_T :

$$d\sigma \propto \frac{\alpha_s^5}{p_T^4}$$
 & $d\sigma \propto \frac{\alpha_s^2}{p_\perp^4} \times \alpha_s^3 \ln$

only diagrams in the naive α_{s} expansion as well as v expansion.

The later is enhanced even if $\alpha_{s} \ll 1$; we may not obtain reliable predictions by considering

14

Importance of higher order corrections at high p_T (2/2)

- Then, expand each of the contributions in powers of α_s ; those are calculable up to NLO.
- Leading order (LO) in $\alpha_s \neq$ Leading power (LP) in $1/p_T$

• Consider the $1/p_T$ expansion first: leading power and subleading power contributions are factorizable.

QCD factorization approach

Leading power (LP) up to NLO

$$d\sigma_{A+B\to[f,Q\bar{Q}]\to H+X}^{\text{QCD-Res}}(\mu) = \sum_{f=q,\bar{q},g} C_{A+B\to[f]+X}^{\text{LP}}(\mu) \otimes D_{[f]\to H}(\mu) + \frac{1}{p_{\perp}^2} \left[\sum_{n} C_{A+B\to[Q\bar{Q}(n)]+X}^{\text{NLP}}(\mu) \otimes \right]$$

Subleading power (NLP) at LO

pQCD projection operators

Matching

condition

$$n = (v, a, t)^{[1,8]}$$
$$= (\gamma^+, \gamma^+ \gamma^5, \gamma^+ \gamma^1)$$

$$d\sigma_{A+B\to H+X}(m \neq 0) = d\sigma_{A+B\to H+X}^{\text{QCD-Evol}}(m = 0) + d\sigma_{A+B\to H+X}^{\text{NRQCD-(n)}}(m \neq 0) - d\sigma_{A+B\to H+X}^{\text{QCD-(n)}}(m = 0)$$

$$\Rightarrow \begin{cases} d\sigma_{A+B\to H+X}^{\text{QCD-Evol}} & \text{when } p_{\perp} \gg m; \ d\sigma^{\text{NRQCD-(n)}} \approx d\sigma^{\text{QCD-(n)}} \\ d\sigma_{A+B\to H+X}^{\text{NRQCD-(n)}} & \text{when } p_{\perp} \to m; \ d\sigma^{\text{QCD-Evol}} \approx d\sigma^{\text{QCD-(n)}} \end{cases}$$

U)

subtract double counting

Nayak, Qiu, Sterman, PRD72 (2005) 114012 Kang, Qiu, Sterman, PRL108 (2012) 102002 Kang, Ma, Qiu, Sterman, PRD90 (2014) 3, 034006, PRD91 (2015) 1, 014030

Partonic subleading power corrections (1/2)

• Power corrections are suppressed by $1/p_T^2$ but sizable at moderate p_T ($p_T \gtrsim O(2m)$).

• LP and NLP have different shapes in p_T .

Partonic subleading power corrections (2/2)

 $p_T \,[{\rm GeV}]$

When you will study medium effects at RHIC, considering only the hadronization of QQ is Okay.

Renormalization group improvement

 Twist-2 evolution equation: DGLAP + quark pair power corrections:

$$\frac{\partial D_{[f] \to H}}{\partial \ln \mu^2} = \gamma_{[f] \to [f']} \otimes D_{[f'] \to H} + \frac{1}{\mu^2} \gamma_{[f] \to [Q\bar{Q}(\kappa)]}$$

The inhomogeneous term is added to the **slope**, not to the FF itself.

Twist-4 "DGLAP like" evolution equation:

$$\frac{\partial \mathcal{D}_{[Q\bar{Q}(n)] \to H}}{\partial \ln \mu^2} = \Gamma_{[Q\bar{Q}(n)] \to [Q\bar{Q}(\kappa)]} \otimes \mathcal{D}_{[Q\bar{Q}(\kappa)] \to H}$$

The RG improved factorized cross section covers all events in which the heavy quark pair can be produced:

- 1. at the short-distance (p_T) : early stage (**NLP**)
- 2. at the input scale (2m): later stage (LP)
- 3. in-between (Quark pair power correction)

Kang, Ma, Qiu, Sterman, PRD 90, 3, 034006 (2014)

19

- Off-diagonal channels: similar to O-to-O.

- 9.0 - 7.2 - 5.4 - 3.6 - 1.8 -0.0

Quark pair corrections to SP FFs

$$\frac{\partial D_{f \to H}}{\partial \ln \mu^2} = \gamma_{f \to f'} \otimes D_{f' \to H} + \frac{1}{\mu^2}$$
$$\frac{\partial D_{f \to H}}{\partial D_{f \to H}} \approx \frac{\partial D_{f \to H}^{\text{Homogeneous}}}{\partial \ln \mu^2} \approx \frac{\partial D_{f \to H}^{\text{Homogeneous}}}{\partial \ln \mu^2}$$

The power corrections effect at low μ^2 does not go away fast: **analogous to** nonlinear gluon recombination effects to gluon PDF at small-x and large μ^2 .

Lee, Qiu, Sterman, KW, SciPost Phys. Proc.8, 143 (2022) Lee, Qiu, Sterman, KW, in preparation.

The quark pair corrections to DGLAP evolution remain significant even at high $\mu^2 \sim p_T^2$.

 $\mu^2 \to \infty$: the slope of $D_{f \to H}$ is the same as LP DGLAP.

leous

Mueller and Qiu, NPB268, 427 (1986) Qiu, NPB291, 746 (1987) Eskola, Honkanen, Kolhinen, Qiu and Salgado, NPB660, 211 (2003)

$$\begin{split} D_{f \to H}(z; m, \mu_0) &= \sum_{[Q\bar{Q}(n)]} \pi \alpha_s \bigg\{ \hat{d}_{f \to [Q\bar{Q}(n)]}^{(1)}(z; m, \mu_0, \mu_\Lambda) & \text{LDMEs} \\ &+ \frac{\alpha_s}{\pi} \hat{d}_{f \to [Q\bar{Q}(n)]}^{(2)}(z; m, \mu_0, \mu_\Lambda) + \mathcal{O}(\alpha_s^2) \bigg\} \frac{\langle \mathcal{O}_{[Q\bar{Q}(n)]}^H(\mu_\Lambda) \rangle}{m^{2L+3}} \\ D_{[Q\bar{Q}(\kappa)] \to H}(z; m, \mu_0) &= \sum_{[Q\bar{Q}(n)]} \bigg\{ \hat{d}_{[Q\bar{Q}(\kappa)] \to [Q\bar{Q}(n)]}^{(0)}(z; m, \mu_0, \mu_\Lambda) \\ &+ \frac{\alpha_s}{\pi} \hat{d}_{[Q\bar{Q}(\kappa)] \to [Q\bar{Q}(n)]}^{(1)}(z; m, \mu_0, \mu_\Lambda) + \mathcal{O}(\alpha_s^2) \bigg\} \frac{\langle \mathcal{O}_{[Q\bar{Q}(n)]}^H(\mu_\Lambda) \rangle}{m^{2L+1}} \\ \mu_0 &= \mathcal{O}(2m) : \text{ input scale}, \ \mu_\Lambda &= \mathcal{O}(m) : \text{NRQCD factorization scale} \end{split}$$

$S_{0}^{[8]}$ dominant scenario

- Fitting the LP formalism with the linear DGLAP evolution eq. to CMS data on high p_T prompt J/ψ at $\sqrt{s} = 7,13 \text{ TeV}$ in the bin, |y| < 1.2.
- Only the ${}^{1}S_{0}^{[8]}$ channel is considered, yielding unpolarized J/ψ . Combining LP and NLP could overshoot data for the other two color octet channels.

•
$$\langle \mathcal{O}({}^{1}S_{0}^{[8]}) \rangle / \text{GeV}^{3} = 0.1286 \pm 5.179 \cdot 10^{-3} \text{ f}$$

by high p_T data is similar to the one extracted using fixed order NRQCD at NLO. Chao, Ma, Shao, Wang, Zhang, PRL108, 242004 (2012)

At $p_T = 30 \text{ GeV}$ and below, the NLP corrections become significant.

The power corrections do not vanish even at the highest p_T , giving 10-30% corrections.

Toward the matching to NRQCD

- contributions start to dominate when $p_T \gtrsim 5 \times (2m_c) \sim 15 \,\text{GeV}$, where the LP is significant, power corrections are small.
- $p_T \lesssim 10 \,\text{GeV} = \mathcal{O}(2m_c)$, where matching between QCD factorization and NRQCD factorization can be made.
- large-z would help us understand the quarkonium production mechanism.

Lee, Qiu, Sterman, **KW**, arXiv:2211.12648 [hep-ph]

II-2. Hadronic quarkonium production of low p_T

Heavy quark pair production of low p_T

• When $M^2 \sim (2m)^2 \gg p_T^2 \gg \Lambda_{\rm OCD}^2$:

The short distance part for heavy quark pair 00000 p_{\perp} production is calculated at LO in α_s : less recoil ,00000, particles. $\checkmark M^2 \gg p_T^2 \gg \Lambda_{\rm OCD}^2$ opens the phase space for U = 0soft gluon radiations: $\ln(M^2/p_T^2)$ -type logarithmic

enhancement needs to be resummed.

 \checkmark The heavy quark pair's p_T is provided by the initialstate gluon shower, not recoil gluons.

Initial-state soft-collinear gluon shower \rightarrow Sudakov form factor

the inertia of the object induces soft gluons

Heavy particle is produced

Y production

Collins-Soper-Sterman (CSS) formalism:

NB: J/ψ is a light quarkonium, so nonperturbative g shower is significant with weak predictive power.

|--|

III. Forward production and nuclear effects

Naive changeover from pp to pA

Hadronic collision: $p + p \rightarrow h + X$

- Proton's leading twist PDFs are replaced with nuclear PDFs.
- Furthermore, nuclear multiple scattering call change:
 - 1. the p_T distribution (Cronin effect)
 - 2. the invariant mass of $Q\bar{Q}$ (nuclear broadening)

hadron-ion collision: $p + A \rightarrow h + X$

 $d\sigma_{p+A\to h+X} \approx f_{i/p} \otimes Af_{j/A} \otimes D_k^h \otimes C$

Factorization and its breaking

QQ can hadronize outside the nuclear matter at forward rapidity. Only the multiple scattering of incoming partons and QQ (not quarkonium) does matter.

> Qiu, Sun, Xiao and Yuan, PRD89, 034007 (2014) Kharzeev and Tuchin, NPA770, 40 (2006) Ma, Venugopalan, **KW**, Zhang, PRC97 (2018) 1, 014909

- At backward rapidity, a quarkonium bound state could be formed inside the nucleus. The multiple scattering can interfere with the hadronization: no factorization.
- If $p_T \sim mv \sim Mv/2 \rightarrow v$ -expansion in NRQCD is not ensured.

Brodsky and Mueller, PLB206, 685-690 (1988)

- At forward rapidity, spectator interactions could interfere with the hadronization: break of factorization.
- However, due to Lorentz time dilation, the hadronization of QQ can be effectively frozen when it passes through the nucleus:

$$\frac{1}{mv} \frac{p_z}{M} \gg \frac{1}{p_T} \quad \text{or} \quad y \gg \ln \frac{Mv}{p_T}$$

Profound multiple scattering effects

hadron-ion collision: $p + A \rightarrow h + X$

- Each scattering in the nuclear target is too soft to calculate perturbatively.
- One can reorganize perturbation theory in terms of a weak coupling gauge field. \rightarrow Color Glass Condensate effective field theory (small-x)
- Phase rotation: interactions with semi-classical fields.

$$U(x_{\perp}) \equiv \mathcal{P}_{+} \exp\left[ig \int dx^{+} t^{a} A_{a}^{-}(x^{+}, x_{\perp})\right]$$

• Resum coherent multiple scattering in the eikonal approximation.

amplified by nuclear size

$$_{+A \to h+X} \approx f_{i/p} \otimes A f_{j/A} \otimes D_k^h \otimes C + \mathcal{O}\left(\frac{A^{1/3}}{Q^2}\right) + \cdots$$

hard interactions involving more than one nucleon are suppressed by powers of Q^2

Forward J/ψ production and polarization in pp

Ma, Venugopalan, PRL113, 19, 192301 (2014)

The MV-model + JIMWLK evolution gives a good parametrization of the unpolarized gluon distribution at small-x.

> Both NRQCD and ICEM reproduce the p_T spectrum. J/ψ is unpolarized! [Ma, Venugopalan, KW, Zhang, PRC97 (2018) 1, 014909]

Ma, Stebel and Venugopalan, JHEP12, 057 (2018)

Nuclear dependence

Ma, Venugopalan and Zhang, PRD92, 071901 (2015)

Relative weights between LDMEs control the strength of the nuclear suppression.

> Multiple scattering of the pair broads the relative momentum of the pair: $M^2 \rightarrow M^2 + \Delta k^2$

> $c\bar{c}$ of large M^2 has less chance to form a quarkonium, e.g. $\psi(2S)$, in pA collisions.

Polarization of forward J/ψ vs. N_{ch}

- > J/ψ gets more unpolarized with N_{ch} due to the multiple rescattering at a short distance.
- Lack of collision energy and system size dependence.
- > Better models can be explored.

CGC + NRQCD with initial fluctuations

Stebel and **KW**, PRD104, no.3, 034004 (2021)

Polarization: frame-dependence

y

 $z_{\rm HX}$

Summary

- The emergence of heavy quarkonium from a produced heavy quark pair has been a big challenge to QCD since November 1974 (a half-century ago!).
- Polarization provides crucial information on the quarkonium production mechanism; the p_T spectrum may not discriminate the production models.
- The collider data indicate that a produced J/ψ is unpolarized in pp collisions; lack of system and frame dependence.
- The ${}^{1}S_{0}^{[8]}$ dominance scenario describes a suite of data shown here, but no clear theoretical consensus has been achieved yet.
- Controllable medium dependence in pA collisions could provide further information on the emergence of quarkonium from a produced heavy quark pair.

Thank you!

Backup

Evolution equations in a simplified situation

 $\frac{d\sigma_{\mathrm{NLP}}^{H}}{dyd^{2}p_{T}} = \int dz du dv C_{[Q\bar{Q}]}(p_{Q}, p_{\bar{Q}}, \mu) \mathcal{D}_{[Q\bar{Q}] \to H}(u, v, z, \mu) \approx$

 $\frac{\partial D_{[Q\bar{Q}(\kappa)]\to H}(z,\mu)}{\partial \ln \mu^2} \approx \sum_{n} \int_{z}^{1} \frac{dz'}{z'} \int_{0}^{1} du \int_{0}^{1} dv \, \Gamma_{[Q\bar{Q}(n)]\to[Q\bar{Q}(\kappa)]}$ $\frac{\partial D_{f\to H}(z,\mu)}{\partial \ln \mu^2} \approx \frac{\alpha_s}{2\pi} \sum_{f'} \int_{z}^{1} \frac{dz'}{z'} P_{f\to f'}(z/z') D_{f'\to H}(z') + \frac{\alpha_s^2(\mu)}{\mu^2}$

- The produced heavy quark pair is dominated by its on-shell state at high p_T .
- We may expand the SDCs and evolution kernels on lower virtuality sides at each evolution step around u = v = 1/2.
- This can be a reasonable approximation suggested by the evolution of DP FFs in u, v-space. S-to-S channels are not dominant at high p_T .

$$\int dz \, C_{[Q\bar{Q}]}(\hat{p}_Q^+ = \frac{1}{2}p_c^+, \hat{p}_{\bar{Q}}^+ = \frac{1}{2}p_c^+, \mu) \underbrace{\int du dv \, \mathcal{D}_{[Q\bar{Q}] \to H}(u, v, z, \mu)}_{\equiv D_{[Q\bar{Q}] \to H}(z, \mu)}$$

$$\int \left(u, v, u' = \frac{1}{2}, v' = \frac{1}{2}, \frac{z}{z'} \right) D_{[Q\bar{Q}(\kappa)] \to H} \left(z', \mu \right),$$

$$\sum_{[Q\bar{Q}(\kappa)]} \int_{z}^{1} \frac{dz'}{z'} P_{f \to [Q\bar{Q}(\kappa)]} \left(u' = \frac{1}{2}, v' = \frac{1}{2}, \frac{z}{z'} \right) D_{[Q\bar{Q}(\kappa)] \to H} \left(z', \mu \right)$$

Input FFs

$$\begin{split} D_{f \to H}(z; m, \mu_0) &= \sum_{[Q\bar{Q}(n)]} \pi \alpha_s \left\{ \hat{d}_{f \to [Q\bar{Q}(n)]}^{(1)}(z; m, \mu_0, \mu_\Lambda) + \frac{\alpha_s}{\pi} \hat{d}_{f \to [Q\bar{Q}(n)]}^{(2)}(z; m, \mu_0, \mu_\Lambda) + \mathcal{O}(\alpha_s^2) \right\} \frac{\left\langle \mathcal{O}_{[Q\bar{Q}(n)]}^H(\mu_\Lambda) \right\rangle}{m^{2L+3}} \mathsf{LDMEs} \\ D_{[Q\bar{Q}(\kappa)] \to H}(z; m, \mu_0) &= \sum_{[Q\bar{Q}(n)]} \left\{ \hat{d}_{[Q\bar{Q}(\kappa)] \to [Q\bar{Q}(n)]}^{(0)}(z; m, \mu_0, \mu_\Lambda) + \frac{\alpha_s}{\pi} \hat{d}_{[Q\bar{Q}(\kappa)] \to [Q\bar{Q}(n)]}^{(1)}(z; m, \mu_0, \mu_\Lambda) + \mathcal{O}(\alpha_s^2) \right\} \frac{\left\langle \mathcal{O}_{[Q\bar{Q}(n)]}^H(\mu_\Lambda) \right\rangle}{m^{2L+1}} \\ \mu_0 &= \mathcal{O}(2m): \text{ input scale, } \mu_\Lambda = \mathcal{O}(m): \mathsf{NRQCD factorization scale} \qquad \kappa = v^{[c]}, a^{[c]}, t^{[c]}, \quad n = {}^{2S+1}L_J^{[c]} \end{split}$$

Indeed, the NRQCD factorization is not reliable as $z \to 1$ where SDCs $\hat{d}(z)$ include the following terms:

1.
$$\delta(1-z)$$
 at LO in α_s expansion

2.
$$f(z)\ln(1-z)$$
 with $f(z)$ being a reg
3. $\frac{f(z)}{[1-z]_{+}}$, $f(z)\left[\frac{\ln(1-z)}{1-z}\right]_{+}$ due to

In our current analysis, we use analytic results if those vanish as $z \to 1$, otherwise, singular or negative input FFs are cast into $C_{[Q\bar{Q}(n)]}$: abs. value

$$D_{[Q\bar{Q}(n)]}(z) = C_{[Q\bar{Q}(n)]}(\alpha_s) \frac{z^{\alpha}(1-z)^{\beta}}{B[1+\alpha,1+\beta]}$$

Ma, Qiu, Zhang, PRD89, no.9, 094029, ibid. 094030 (2014) Lee, Qiu, Sterman, KW, SciPost Phys. Proc.8, 143 (2022)

Perturbative SDCs of input FFs in α_s and v expansion in the NRQCD are reliable only when SDCs $\ll O(1)$.

gular function

o the perturbative cancelation of IR divergences

$$(\alpha \gg 1, 1 > \beta > 0)$$

 \rightarrow to be tuned, imitating δ -function at LO.

Uncertainty of theoretical calculations

Initial state fluctuations: a simple model setup

 $\xi \sim 2 \text{ or } 3$ for heavy targets.

principle generate flow.

IP-Sat: p + p, $|\eta| < 1.0$

- The difference between FF and LPHD is about <15% (<20%) at c = 4 in bCGC (IP-Sat).
- About 30% difference between bCGC and IPSat comes from the energy dependence of $Q_{\rm s}$.
- Geometrical fluctuation off.

> High multiplicity events $N_{ch} \gg \langle N_{ch} \rangle$: In pp collisions, $Q_{s,p} = cQ_0^2$, $c \ge 1$. In pA collisions, implementation gets more complicated due to the fluctuation from N_{coll} . Nevertheless, we shall set $Q_{s,A} = c\xi Q_0^2$, $c \ge 1$ and

> Levin and Rezaeian, PRD82, 014022 (2010) Dusling and Venugopalan, PRD87, no.9, 094034 (2013)

Note: These dense gluon configurations could have eccentric shapes whose final state interactions can in

New constraint on LDMEs?

• Consistent with the universality requirement from BELLE e^+e^- data: $\langle \mathcal{O}^{J/\psi}[{}^{1}S_{0}^{[8]}] \rangle + 4.0 \langle \mathcal{O}^{J/\psi}[{}^{3}P_{0}^{[8]}] \rangle / m^{2} < 2.0 \pm 0.6 \times 10^{-2} \,\mathrm{GeV^{3}}$

• Caveat: Tevatron and LHC data tell that ${}^{1}S_{0}^{[8]}$ has a large weight at high p_{T} .

Ma, Tribedy, Venugopalan, **KW**, PRD98, 7, 074025 (2018) Ma, Tribedy, Venugopalan, **KW**, NPA982, 747-750 (2019)

state is favored.

Zhang, Ma, Wang, Chao, PRD81 (2010)

Quarkonium's p_T spectrum and fluctuation

> Both Improved-CEM and NRQCD give similar p_{\perp} slopes at low p_{\perp} , even when $N_{\rm ch}$ is much high.

Forward production: weighted sum with LDMEs

An initial state effect scenario

- Semi-hard multiple rescattering of high occupied gluons: $k \sim O(Q_s)$
 - $c\bar{c}$ production yield is enhanced at high multiplicity.
- Nuclear enhanced soft colors transfer from spectators: $k \sim \mathcal{O}(\Lambda_{OCD}) \sim \Delta E_{J/\psi}$ 2.
 - The soft color exchange effect is seen in ψ' stronger suppression in MB p+A collisions as ψ' is a loosely binding system. J/ψ is a stronger bound state but can be broken in high N_{ch} .

 \rightarrow Multiple rescattering effects can be studied in a dense-dense Glasma system. \rightarrow It's possible to model final state incoherent rescattering effects by matching our results to kinetic theory or open quantum system descriptions.

Ma, Venugopalan, **KW**, Zhang (2017)

Tanji, Berges (2017) Yao, Mehen (2018)

• • •

