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Quarkonium production in experiments

Proton collisions

▶ Pair production in parton collisions

▶ Some are bound

Nuclear collisions

▶ Pair production in parton collisions

▶ Bound states formed after traversing hot
environment
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Experimental data of Υ

Sequential melting is observed

▶ Almost no pT dependence

▶ Υ (1S) suppression at STAR ≃ CMS ?
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Figure 5: The dependence of RAA of ⌥ mesons on Npart for Pb–Pb at 5.02 TeV and Au-Au collisions
at 200 GeV, measured at midrapidity (left) and forward rapidity (right).

challenging to obtain from lQCD). The question of regeneration, especially in the case of multiple
quark pairs, has not been addressed yet at a level suitable for phenomenological applications. The
equilibration of a single pair has been studied in Ref. [84] and in semiclassical limits for multiple pairs
in Refs. [85, 86]. All of these considerations will figure in the model descriptions given in Sec. 4.

3.2 Lattice QCD Results

Lattice-QCD calculations can provide first-principles input into theoretical modeling of quarkonium
production in heavy-ion collisions. Many quantities of interest, like in-medium quarkonium masses and
widths, or transport coe�cients, are encoded in the spectral functions, defined as the imaginary part
of the retarded meson correlation functions [4, 87]. For example, the in-medium widths of quarkonia
are closely related to the reaction rates used in transport models. If the widths are reasonably small,
quarkonium states can be identified by peaks in the spectral functions. As temperature increases, the
peaks become broader and ultimately can no longer be used to identify quarkonium states. For ex-
ample, if the width of the peak is much larger than the energy splitting between di↵erent quarkonium
states it is no longer possible to extract well defined quarkonium states. Obtaining the spectral func-
tions from lQCD is challenging because the latter is formulated in Euclidean time, and the correlation
functions are given in terms of integrals over spectral functions. Temporal correlation functions are re-
lated to spectral functions via a Laplace transformation, while spatial correlation functions are related
to spectral functions via a double integral transformation [4]. Lattice QCD calculations can also be
combined with EFT approaches. For example, information about quarkonium spectral function can
be obtained using a lattice formulation of NRQCD [88–93]. In this way one avoids large discretization
e↵ects due to HQ masses An additional benefit arises from the fact that meson correlators in NRQCD
do not obey periodic boundary conditions, which e↵ectively implies that information on meson correla-
tors can be obtained from doubling the temporal extent in the Euclidean time direction. Heavy-Quark
E↵ective Theory (HQET) can be used for lQCD calculations of the HQ di↵usion coe�cient [94–96].

Most lattice studies of quarkonium spectral functions use point meson operators, i.e., meson oper-
ators with the quark and antiquark field located at the same spatial point. It turns out that temporal
meson correlation functions with point meson operators have limited sensitivity to the in-medium
properties of quarkonia [1, 4]. This is due to large contributions from the continuum part of the spec-
tral function to the correlators of point meson operators, as well as the rather small temporal lattice
extent at high temperatures [97, 98]. Therefore, no conclusive results on the in-medium properties
of the quarkonium states could be obtained from the temporal correlation functions of point meson
operators. There only seems to be a consensus that the 1S bottomonium state can survive in the
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Figure 6: The dependence of RAA of ⌥ mesons on pT for 0-90% Pb–Pb collisions at 5.02 TeV, at
midrapidity.

QGP for T > 400 MeV, with a small mass shift [89, 90, 99]. The study of spatial meson correlation
functions is not limited to small separations, rendering them more sensitive to the in-medium prop-
erties of quarkonia [100–102]. In particular, indications were found that 1S charmonia states may
dissolve for temperatures of 200-300MeV [100, 101], while 1S bottomonium states will dissolve for
temperatures above 500MeV [102]. The latter finding is consistent with the analysis of bottomonium
spectral function in lattice NRQCD.

Correlators of extended meson operators, i.e., meson operators with quark and antiquark fields
separated by some spatial distance, are more sensitive to the in-medium modification of quarkonia,
since the contribution of the continuum part to the spectral function is reduced. Using NRQCD with
extended operators it was possible to analyze in-medium masses and widths of di↵erent bottomonium
states [91, 92]. Interestingly, it was found that the in-medium mass shift of all bottomonium states is
small and compatible with zero within estimated errors. The in-medium width of di↵erent bottomo-
nium states was found to increase with temperature, and that the magnitude of the width follows a
hierarchy in the sizes of the di↵erent states [91, 92].

The in-medium modification of QQ̄ interactions in QGP has been traditionally studied in terms
of the free energy and singlet free energy of a static QQ̄ pair. The latter quantity can be defined in
Coulomb gauge. State-of-the-art calculations in 2+1 flavor QCD with physical quark masses suggest
that color screening in the free energy sets in at distances r ' 0.3/T [103]. Previous studies of the QQ̄

free energy for two [104] and three [105] degenerate quark flavors with unphysical masses have been
used as input potentials in some phenomenological models.

The QQ̄ free energy characterizes the interactions at time scales much larger than the inverse
temperature. For quarkonia physics, it is more relevant to consider a complex potential defined in
terms of Wilson loops [106]. The first calculation of the complex potential along these lines with
2+1 flavor QCD with unphysical quark masses found [107] that the real part of the potential is
screened. A parametrization of these results using a generalized Gauss law model [108] has also
been used in some phenomenological models. The corresponding lattice calculations are performed on
N⌧ = 12 lattices and with limited statistics. Another lattice study that also uses N⌧ = 12 lattices, but
with much larger statistics, extracted a di↵erent result [109]. Here, simple but physically motivated
parametrizations of the spectral functions were used to obtain the real and imaginary parts of the
potential: the real part of the potential turns out not to be screened in general [109]. The only way to
obtain a screened potential from the lattice results of Ref. [109] is to use a perturbative HTL inspired
representation of the spectral function [109]. However, it turns out that, although HTL results for the
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Experimental data of J/ψ

Recombination begins to dominate at LHC

▶ Recombination of (initially independent) charm quark pairs at low pT
▶ Collective flow at low to intermediate pT supports this picture
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Figure 1: The dependence of RAA of J/ mesons on the charged particle multiplicity (at midrapidity)
for Pb–Pb at 5.02 TeV and Au-Au collisions at 200 GeV, measured at midrapidity (left) and forward
rapidity (right). In the left-hand plot, at midrapidity, the data at the SPS from the NA50 collaboration
[41] (as shown in [47]) are included.

The relative production of  (2S) and J/ mesons as a function of collision energy is shown in
Fig. 4. The data points for pp collisions are from experiments at the SPS [58], HERA (pA) [59],
RHIC [60, 61], and the LHC [62–64]. The average value of the pp measurements is represented by the
black horizontal line with the 1�-uncertainty represented by the dashed lines. The point for central
Pb–Pb collisions at SPS energy is from the NA50 experiment [65] and the point at the LHC is from
ALICE [66].

2.2 Bottomonium

The early observation by the CMS collaboration at the LHC of the suppression of ⌥ mesons [67], which
was clearly stronger for the radially-excited states, was followed by the current precise measurements of
RAA for the ⌥ states by CMS [68–70] and ATLAS [71] at midrapidity and ALICE at forward rapidity
[72]. A similar ⌥(1S) and ⌥(2S) suppression pattern (and magnitude, for ⌥(1S)) was measured at
RHIC by STAR [73]. A summary of the data is presented in Fig. 5.

The suppression shows a similar magnitude at forward rapidity and midrapidity. It is gradually
stronger going from the 1S to the 2S and 3S states; this significant pattern is denoted as “sequential
suppression”, with the picture of the melting of the excited states in QGP and their ”missing” feed-
down to the 1S state.

The data are shown as a function of pT in Fig. 6 for midrapidity in 0-90% Pb-Pb collisions. No
prominent features were observed, except a small increase of RAA vs. pT for the ⌥(1S) state. Elliptic
flow of ⌥ mesons was measured to be small, both at forward rapidity [24] and at midrapidity [25],
compatible with zero.

3 Theoretical background

One of the advantages of quarkonium physics in QCD matter is the availability of first-principle lQCD
computations for a variety of finite-temperature quantities, such as quarkonium correlation functions,
heavy-quark free energies and susceptibilities. This is particularly relevant for a strongly coupled
medium where non-perturbative e↵ects are expected to be prevalent and perturbative calculations
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Figure 2: The pT dependence of RAA of J/ mesons in central Au-Au (left panel) and Pb-Pb (right
panel) collisions.
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Figure 3: The pT dependence of RAA (left panel, central collisions) and v2 (right panel, 30-50%
centrality) of J/ mesons in comparison to D mesons and pions in Pb–Pb collisions at 5.02 TeV.

must be interpreted with care. However, since lQCD computations are carried out in Euclidean space-
time, the information is usually not readily applicable for use in transport simulations of heavy-ion
collisions.

In Sec. 3.1, we discuss some of the methods that have been used to assess in-medium quarkonium
properties and their implementation into transport models, and in Sec. 3.2 we give a more detailed
account of pertinent lQCD results.

3.1 Theoretical Methods

A key concept in facilitating the connection between lQCD and e↵ective-model calculations are in-
medium spectral functions. Quite generally, the latter encode information on the degrees of freedom
in the medium (through the presence or absence of well-defined peaks), their in-medium masses and
(if applicable) binding energies and the elastic and inelastic reaction rates represented by their widths.
Both binding energies and reaction rates are related to the in-medium interaction between heavy
quarks and between the heavy quarks and the thermal partons of the medium, respectively. This
connection also highlights the importance of utilizing a reasonably realistic model of the thermal

6
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Simulations

Υ is simpler, but there exist many models, some of which are based on open quantum systems

▶ Not all the models use the same initial conditions or hydro backgrounds

▶ Detailed descriptions are given in [Andronic et al 2402.04366]
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Figure 18: Left: RAA as a function of Npart for ⌥(1S), pT-integrated; right: RAA as a function of pT
for 0-10% centrality. For the TAMU model the regeneration component is shown separately (dotted
line) and also summed to the suppression component (dashed line). The results of the SHM, included
in the left plot for the case of 50% thermalized bottom quarks, constitute pure generation at Tpc.

cf. Fig. 7, while Tsinghua has a smaller initial temperature in central collisions but a larger one at
”intermediate” centralities which could explain the stronger suppression in more peripheral collisions.
The Saclay and the Munich-KSU results are closest to each other, which may be due to due to longer
lifetime in the Bjorken model (Saclay) and escape e↵ects in the Munich-KSU which render the latter’s
RAA higher in peripheral but lower in central collisions where the initial temperature is higher. Both
models generate a stronger suppression than TAMU, which is largely consistent with the temperature
evolution shown in Fig. 7.

5.7 Quarkonium Formation Time E↵ects

To study the impact of quarkonium formation times calculations were performed starting from a
“realistic” initial QQ state (the one used in the respective dynamical model, usually reported as a
”point-like initial state” in the OQS and the ground state in semiclassical approaches). This state was
evolved in a QGP at fixed temperature T=300 MeV, neglecting regeneration. The models provided
the ”survival” probability as a function of time to find this QQ pair at p=0 in an eigenstate of the
in-medium potential.

Figure 19 illustrates how suppression mechanisms underlying the calculations of the decay rate are
realized in a basic time evolution scenario at constant T . We focus the discussion on the bottomonium
case which was addressed by most of the groups. In the TAMU approach, where the initial state is an
in-medium ⌥(1S) state and regeneration mechanisms were discarded for the purpose of this study, one
finds as expected a survival probability = exp(��t), where � agrees with the reaction rate displayed in
Fig. 9 (including the gluo-dissociation mechanism); the inclusion of a formation time typically delays
the evolution, with an o↵set of ⇡ 0.05 fm/c. The same exact agreement with the exponential decay
law is obtained in the Saclay calculation as the regeneration was not considered in this implementation
of the model. In the Duke approach the regeneration component was not removed, leading to a slight
deviation with respect to the exponential decay initiated with a vacuum state of the ⌥(1S)3, of the
order of 5% after 8 fm/c. In the Munich-KSU calculation, the evolution starts from a compact state
close to a Dirac �-function peak. While the evolution of the survival probability of the in-medium state
decreases nearly exponentially, the associated decay rate is found to be twice the imaginary part of the
eigenvalue (⇡ 8.95 � 0.017i GeV) corresponding to the fundamental eigenstate of the non-hermitian

3Note that ”in-medium states” are not defined in the Duke approach owing to the � ⌧ Eb hierarchy.

42

I will talk about how open quantum system descriptions are developed

7 / 29



Minimum of open quantum system
[reviewed in Akamatsu (22), §2]
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Basics of open quantum system

System + environment setup H = HS ⊗HE

ρS(t) = TrE [ρ(t)] , ρ̇(t) = −i [H, ρ] : von-Neumann equation

Gorini-Kossakowski-Sudarshan-Lindblad (or Lindblad) equation for ρS(t)

▶ If the evolution is Markovian, trace-preserving, and completely positive

ρ̇S(t) = −i[H ′
S , ρS ] +

∑
µ

LµρSL
†
µ − 1

2

{
L†
µLµ, ρS

}
︸ ︷︷ ︸

dissipator D[ρS ]

▶ It can also be written by

ρ̇S(t) = −iHeffρS + iρSH
†
eff︸ ︷︷ ︸

non-Hermitian evolution

+
∑
µ

LµρSL
†
µ︸ ︷︷ ︸

quantum jump

, Heff = H ′
S − i

2

∑
µ

L†
µLµ

Derivation of the Lindblad equation when system-environment coupling is weak
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Born-Markov approximation

0. Notations and assumptions

H = HS ⊗ IE + IE ⊗HE +
∑

V
(i)
S ⊗ V

(i)
E︸ ︷︷ ︸

≡ V

, ρ(0) = ρS(0)⊗ ρE(0)︸ ︷︷ ︸
no initial correlation

1. Formally solve the von Neumann equation in the interaction picture

ρ(t) = ρ(0)− i

∫ t

0

ds[V (s), ρ(s)],

d

dt
ρ(t) = −i[V (t), ρ(t)] = −i[V (t), ρ(0)]−

∫ t

0

ds[V (t), [V (s), ρ(s)]]

2. Trace out environment + Born approx. (weak coupling) + Markov approx. (see any textbook)

d

dt
ρS(t) =

∫ ∞

0

ds ⟨VE(s)VE(0)⟩︸ ︷︷ ︸
env. correlator

[
VS(t− s)ρS(t)VS(t)− VS(t)VS(t− s)ρS(t)

]
+ h.c.+O(V 3)

▶ If one point function TrE(ρE(0)VE(t)) = c(t) exists, reshuffle c(t)VS(t) in H
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Derivative expansion in quantum Brownian regime

3. Derivative expansion

d

dt
ρS(t) =

∫ ∞

0

ds ⟨VE(s)VE(0)⟩︸ ︷︷ ︸
fast decay

[
VS(t− s)︸ ︷︷ ︸

slow

ρS(t)VS(t)− VS(t)VS(t− s)ρS(t)
]
+ h.c.+O(V 3)

VS(t− s) ≃ VS(t)− sV̇S(t) + · · · = VS(t)− is[HS , VS(t)] + · · ·

4. Lindblad operator (c.f. Caldeira-Leggett model L ∝ x+ i
4T ẋ)

γ =

∫ ∞

−∞
dt ⟨VE(t)VE(0)⟩ > 0 → L =

√
γ

(
VS +

i

4T
V̇S + · · ·

)
︸ ︷︷ ︸

approximate detailed balance

5. Hamiltonian part (omitted in this talk)
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Heavy quark as an open quantum system
[reviewed in Akamatsu (22), §3.2]

12 / 29



Effective field theory for a heavy quark in medium

Heavy quark effective theory with vµ = (1, 0, 0, 0) in a thermal rest frame

▶ Lagrangian with 1/M expansion

LHQET = ψ†

[
iDt +

D⃗2

2M
− gσ⃗ · B⃗

2M
+O(M−2)

]
ψ

▶ Power counting near equilibrium A ∼ T and ∂t ∼ T,∇ ∼
√
MT for ψ

LHQET ≃ ψ†

[
i∂t +

∇⃗2

2M
− gA0 + · · · )

]
ψ

Born-Markov approximation requires weak coupling g ≪ 1

13 / 29



Lindblad equation for a heavy quark [Akamatsu (15, 20)]

Non-relativistic quantum mechanics

H(x, p) =
p2

2M
+ gA0(x) =

p2

2M
+

∫
k

eikxta ⊗ gÃa
0(k)︸ ︷︷ ︸

=
∑

a

∫
k
V a
S (k) ⊗ V a

E (k)

Environmental correlator∫ ∞

−∞
dt

〈
gÃa

0(t, k)gÃ
b
0(0, k

′)
〉

︸ ︷︷ ︸
perturbatively with HTL

= γ̃(k)(2π)3δ3(k − k′)δab

Lindblad operator

La
k =

√
πg2Tm2

D

k(k2 +m2
D)2︸ ︷︷ ︸

=
√

γ̃(k)

eikx/2
(
1− kp

4MT

)
eikx/2ta︸ ︷︷ ︸

scattering with color rotation

+ · · ·
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Evolution in color space

Simplified in the M → ∞ limit

ρijS (t, x, y) ≡ ⟨x, i|ρS(t)|y, j⟩ : Nc ×Nc matrix

∂tρS(t, x, y) = −γ(x− y)taρ(t, x, y)ta + CF γ(0)ρ(t, x, y)

Equivalent to random color rotation

ρS(t, x, y) ≡ ⟨ψ(t, x)ψ∗(t, y)⟩θ : ψ = wave function with Nc components

ψ(t+ dt, x) = e−iθa(t,x)tadtψ(t, x), ⟨θa(t, x)θb(t′, x′)⟩ = γ(x− y)δ(t− t′)δab

Time scale of color relaxation

γ(0) =
g2T

4π
→ τcolor ∼

1

g2T
≫ τelectric ∼

1

gT︸ ︷︷ ︸
∂-expansion justified when g ≪ 1
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Evolution in phase space

Master equation in full space is complicated, so trace out the color space

ρ̄S(t, x, y) ≡ TrcρS(t, x, y)

Turns out to be equivalent to

La
k → Lk =

√
CF γ̃(k) e

ikx/2

(
1− kp

4MT

)
eikx/2︸ ︷︷ ︸

(color averaged) scattering

Master equation for quantum Brownian motion (truncating from the full Lindblad equation)

∂

∂t
ρ̄S(t, x, y) = i

∇2
x −∇2

y

2M
ρ̄S(t, x, y)− CF

[
γ(0)− γ(x− y)︸ ︷︷ ︸

decoherence

− ∇γ(x− y)

4MT
· (∇x −∇y)︸ ︷︷ ︸

dissipation

]
ρ̄S(t, x, y)

▶ Wave packet limit γ(x− y) ≃ γ(0) + 1
2 (x− y)2γ′′(0) reproduces Caldeira-Leggett master equation
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Quarkonium as an open quantum system
[reviewed in Akamatsu (22), §4.2]

17 / 29



Effective field theory for quarkonium

Potential non-relativistic QCD

▶ Lagrangian with 1/M and dipole expansion (pi ∼Mv, ω ∼ Pi ∼Mv2)

LpNRQCD =

∫
r

Trc

[
S†

(
i∂t +

∇2
r

M
+
CFαs

r
+ · · ·

)
S + O†

(
iDt +

∇2
r

M
− αs

2Ncr
+ · · ·

)
O

]
+Trc

[
O†r⃗ · gE⃗S + S†r⃗ · gE⃗O

]
+

1

2
Trc

[
O†r⃗ · gE⃗O+O†Or⃗ · gE⃗

]
+ · · · ,

S(t, R, r) ≡ S(t, R, r)√
Nc

1, O(t, R, r) ≡
√
2Oa(t, R, r)taF

▶ Gauge interaction of octet quarkonium is absorbed in field redefinition (Dt → ∂t)

O(t, R, r) = ΩF(t,−∞)O′(t, R, r)Ω†
F(t,−∞), E⃗(t, R) = ΩF(t,−∞)E⃗′(t, R)Ω†

F(t,−∞)

ΩF(t,−∞) ≡ Pexp

[
−ig

∫ t

−∞
dt′Aa

0(t
′, R)taF

]
,

Born-Markov approximation requires r to be short, but not necessarily g ≪ 1
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Lindblad equation for quarkonium [Brambilla et al (17,18)]

Non-relativistic quantum mechanics (s = singlet, a, b, c, · · · = octet)

H =
p2

M
− CFαs

r
|s⟩⟨s|+ αs

2Ncr
|a⟩⟨a| − ri

[√ 1

2Nc
(|a⟩⟨s|+ |s⟩⟨a|)︸ ︷︷ ︸

singlet ↔ octet

+
1

2
dabc|b⟩⟨c|︸ ︷︷ ︸

octet ↔ octet

]
gEa

i (R⃗)

Environmental correlator ∫ ∞

−∞
dt

〈
gE′a

i (t, R)gE′b
j (0, R)

〉︸ ︷︷ ︸
gauge invariant?

= γδijδab

Lindblad operator

Lai =
√
γri

[√ 1

2Nc
(|a⟩⟨s|+ |s⟩⟨a|) + 1

2
dabc|b⟩⟨c|

]
+ · · ·

-

か、 鄲た。、 る・ 一
-

0chtze.se/fenersy(aHJEL)cdlisions(LgI)

か、 が「訶が
S- Trees-@-_-圏-.eeの一

o r

self.euergy Collision s

small dipole−−−−−−→

-

か、 鄲た。、 る・ 一
-

0chtze.se/fenersy(aHJEL)cdlisions(LgI)

か、 が「訶が
S- Trees-@-_-圏-.eeの一

o r

self.euergy Collision s
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Careful treatment of field redefinition

Gauge invariant correlator for singlet-octet rate [Yao (22)]

γso =
1

3(N2
c − 1)

∫ ∞

−∞
dt

〈
gEa

i (t, R)[ΩA(t, 0)]abgE
b
i (0, R)

〉
▶ γso vanishes in strong coupling limit by AdS/CFT [Nijs-ScheihingHitschfeld-Yao (23)]

▶ γso is similar to but different from heavy quark momentum diffusion constant
[CasalderreySolana-Teaney (06), CaronHuot-Moore (08)]

κ =
1

3Nc

∫ ∞

−∞
dt ⟨TrcΩF(−∞, t)gEi(t, R)ΩF(t, 0)gEi(0, R)ΩF(0,−∞)⟩

Octet-octet rate is also different from γso [Akamatsu, in progress]

γoo =
1

3(N2
c − 1)

∫ ∞

−∞
dt ⟨TrcΩA(−∞, t)g(d ◦ Ei)(t, R)ΩA(t, 0)g(d ◦ Ei)(0, R)ΩA(0,−∞)⟩

dabcEa
i =: (d ◦ Ei)bc
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Transitions of quarkonium

Lindblad operators

▶ Color dynamics inside octet is fast in a fixed basis → trace out the octet sector

ρsS = ⟨s|ρS |s⟩, ρoS = ⟨a|ρS |a⟩, ρ̄S =

(
ρsS 0
0 ρoS

)
▶ Lindblad operators split into three

Li,s→o =
√
γso

[√
CF ri + · · ·

](0 0
1 0

)
, Li,o→s =

√
γso

[
ri√
2Nc

+ · · ·
](

0 1
0 0

)
,

Li,o→o =
√
γoo

[ri
2
+ · · ·

](0 0
0 1

)
▶ Terms “ · · · ” are responsible for satisfying the approximate detailed balance relation
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Discussion on heavy quark spin from the open system perspective
[Akamatsu, in progress]
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Heavy quark spin as an open quantum system

Heavy quark effective theory with vµ = (1, 0, 0, 0) in a thermal rest frame

▶ Lagrangian with 1/M expansion

LHQET = ψ†

[
iDt +

D⃗2

2M
− gσ⃗ · B⃗

2M
+O(M−2)

]
ψ

▶ Focus on spin dynamics of a static heavy quark

LHQET ≃ ψ†

[
iDt −

gσ⃗ · B⃗
2M

]
ψ

Gauge interaction of the heavy quark is absorbed in field redefinition

ψ(t, x) = ΩF(t,−∞)ψ′(t, x), B⃗(t, x) = ΩF(t,−∞)B⃗′(t, x)Ω†
F(t,−∞)

ΩF(t,−∞) ≡ Pexp

[
−ig

∫ t

−∞
dt′Aa

0(t
′, R)taF

]
,

Born-Markov approximation requires M ≫ T , but not necessarily g ≪ 1
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Lindblad equation for heavy quark spin

Only non-relativistic spin remains

H =
1

2M
σit

a ⊗ gB′a
i (x)

Environmental correlator ∫ ∞

−∞
dt

〈
gB′a

i (t, x)gB′b
j (0, x)

〉︸ ︷︷ ︸
gauge invariant?

= γsδijδab

Lindblad operators

Lai =

√
γs

2M
(σit

a + · · · )︸ ︷︷ ︸
spin & color rot.

=

√
γs

2M
σit

a (∵ HS = 0)
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Careful treatment of field redefinition

Gauge invariant correlator for spin relaxation rate

γs =
2

3(N2
c − 1)

∫ ∞

−∞
dt ⟨TrcΩF(−∞, t)gBi(t, 0)ΩF(t, 0)gBi(0, 0)ΩF(0,−∞)⟩

Lindblad operators

▶ Color dynamics is fast in a fixed basis → trace out color space ρ̄S ≡ TrcρS

Lai → Li =

√
CF γs
2M

σi︸︷︷︸
spin rot.

▶ Convenient to introduce κs ≡ CF γs

κs =
1

3Nc

∫ ∞

−∞
dt ⟨TrcΩF(−∞, t)gBi(t, 0)ΩF(t, 0)gBi(0, 0)ΩF(0,−∞)⟩

c.f. κ =
1

3Nc

∫ ∞

−∞
dt ⟨TrcΩF(−∞, t)gEi(t, R)ΩF(t, 0)gEi(0, R)ΩF(0,−∞)⟩

Can anyone measure κs on the lattice? → Yes, measured as 1/M -correction for κ
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Heavy quark spin relaxation rate

Lindblad equation

∂

∂t
ρ̄S =

κs
4M2

(σj ρ̄Sσj − 3ρ̄S)

Relaxation of the averaged spin

⟨Si⟩ ≡ Trs

(
ρ̄S

1

2
σi

)
,

d

dt
⟨Si⟩ = − κs

M2
⟨Si⟩

Agrees with hydrodynamic derivation [Hongo-Huang-Kaminski-Stephanov-Yee (22)]

Γs =
1

6Tχs
GΘiΘi

12 (ω → 0, k = 0), Θ⃗ ≡ − g

2M
ψ†(B⃗ × σ⃗)ψ
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Heavy quark spin polarization

Equilibrium environment

▶ It is tempting to think that we chose

H = [Hspin ⊗Hcolor]S ⊗ [HQGP]E → ⟨B⃗a(t, x)⟩ = 0⃗

▶ However, we traced out heavy quark color, which is equivalent to

H = [Hspin]S ⊗ [Hcolor ⊗HQGP]E → ⟨B⃗(t, x)⟩ = 0⃗

It is natural because color rotation is determined by temporal Wilson line

Vortical environment ω⃗ ̸= 0⃗

▶ Heavy quark color state and QGP with vorticity are correlated

B⃗eff(ω⃗)︸ ︷︷ ︸
U(1)

≡ ⟨B⃗(t, x)⟩ω = λω⃗ +O(ω3),

Recall: The effect of one point function TrE(ρE(0)VE(t)) = c(t) in the Born-Markov approximation
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Lindblad operator with approximate detail balance

1. Reshuffle the one-point function

H =
1

2M
σ⃗ ⊗ gB⃗(x) =

1

2M
σ⃗ · gB⃗eff(ω⃗)︸ ︷︷ ︸
= HS(ω⃗)

⊗IE +
1

2M
σ⃗ ⊗ g (B⃗(x)− B⃗eff(ω⃗))︸ ︷︷ ︸

≡ ∆B⃗(x)

2. Rate in vortical environment

κs(ω⃗) =
1

3Nc

∫ ∞

−∞
dt ⟨TrcΩF(−∞, t)g∆Bi(t, 0)ΩF(t, 0)g∆Bi(0, 0)ΩF(0,−∞)⟩ω = κs +O(ω2)

3. System-environment coupling

Lk(ω⃗) =

√
κs(ω⃗)

2M

(
σ⃗ +

i

4MT
gB⃗eff(ω⃗)× σ⃗︸ ︷︷ ︸
= i ˙⃗σ/4T

)
k
≃

√
κs

2M

(
σ⃗ +

igλ

4MT
ω⃗ × σ⃗

)
k
+O(ω2)
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Conclusion and outlook on heavy quark spins

Theoretical description

▶ In the static limit, the Lindblad equation can be derived nonperturbatively

▶ In the weak rotation, κs and λ characterizes the dynamics

▶ Renormalization of the Hamiltonian by coupling to environment

▶ Need to examine possible interplays with and complications from other 1/M effects

▶ Matching between QCD and static HQET should be considered

▶ Collaborations welcome!

Experimental issues

▶ Initial spin polarization of heavy quarks?

▶ Hadronic phase?
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Back up
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Approximate detailed balance in quantum Brownian regime

Ratio of the rates for E1 → E2 and E2 → E1 by Lindblad operator L = VS + i
4T V̇S

⟨E2|L|E1⟩ ∝ ⟨E2|VS |E1⟩
(
1− E2 − E1

4T

)
,

Γ1→2

Γ2→1
=

|⟨E2|L|E1⟩|2

|⟨E1|L|E2⟩|2
=

[
1− E2−E1

4T

1− E1−E2

4T

]2

≃ exp

[
−E2 − E1

T

]
,

∵
(
1 + x/4

1− x/4

)2

≃ 1 + x+
1

2
x2 +

3

16︸︷︷︸
≃ 1/6

x3 + · · · ≃ ex

Numerically, the detailed balance is satisfied with 3% level when ∆E ≲ T
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Lattice simulation for κs

κE(= κ) and κB(= κs) [HotQCD Collaboration (24) (PRL’s supplemental material)]

κtot = κE +
2

3
⟨v2⟩κB︸ ︷︷ ︸

≃ 2T
M κB

10
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FIG. 9. Comparison of E,B from lattice calculations in terms of T/Tc (left) and T (right). The quenched E are taken from
[18–20] and the 2+1 flavor E is taken from [14]. The quenched B are taken from [16, 21]. The E points are slightly shift
horizontally for better visibility.
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FIG. 10. Left: lattice results of the charm quark susceptibility [23] and the fit to quasi particle model. Right: the extracted
charm quark mass from the fits.

See also [Banerjee-Datta-Laine (20), TUMQCD Collaboration (23), Altenkort-delaCruz-Kaczmarek-Moore-Shu (24)]
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