Dynamical core-corona initialization model for high-energy nuclear collisions

Collaborators: Yuuka Kanakubo, Tetsufumi Hirano

ExHIC-p workshop on polarization phenomena in nuclear collisions Institute of Physics, Academia Sinica, Taipei, March 15th, 2024

Yasuki Tachibana

Introduction

QGP fluid signal even in small systems

Collectivity seen in high multiplicity small systems

- Hydrodynamic response to initial collision geometry (v_n)

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

PHENIX, Nat. Phys. 15, 214–220 (2019)

Hadron production from small to large systems

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Strange baryon production ratio

- Smooth increase scaled to multiplicity
- No system size dependence
- No collision energy dependence

Hadron production from small to large systems

ALICE, Nature Phys. 13, 535-539 (2017)

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Strange baryon production ratio

- Smooth increase scaled to multiplicity
- No system size dependence
- No collision energy dependence

Transition from vacuum to thermal

Hadron production from small to large systems

ALICE, Nature Phys. 13, 535-539 (2017)

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Strange baryon production ratio

- Smooth increase scaled to multiplicity
- No system size dependence
- No collision energy dependence

Transition from vacuum to thermal

Partial thermalization?

Dynamical initialization framework M. Okai, et al., PRC 95, 054914 (2017), C. Shen, B. Schenke, PRC 97, 024907 (2018), Y. Akamatsu, et al., PRC98, 024909 (2018)

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Dynamical initialization via source terms

- Initial parton creation via an MC event generator
- Fluid formation by hydrodynamic eq. with source term

$$\nabla_{\mu} T^{\mu\nu}_{\text{fluid}}(x) = J^{\nu}(x)$$

with initial condition $T^{\mu\nu}_{\text{fluid}}(t=0,\vec{x})=0$

- Source term J^{ν} accounting for the thermalized energy-momentum of initial partons
 - Energy-momentum conservation in the whole system (No overall normalization factor)
 - Natural introduction of initial velocity distribution
 - \rightarrow Source of vorticity locally distributed in QGP fluid?

Source term from interaction rates among partons

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Dynamical core-corona initialization (DCCI) Y. Kanakubo, et al., PTEP 2018, no.12, 121D01 (2018), PRC 101, no.2, 024912 (2020), PRC 105, no.2, 024905 (2022)

$$)), \quad \frac{dp_{i}^{\nu}}{dt} = \sum_{\substack{j \in \text{ partons} \\ j \neq i}} \sigma_{ij} |\vec{v}_{ij}^{\text{rel}}| p_{i}^{\nu} \rho\left(\vec{x}_{j}(t) - \vec{x}_{i}(t)\right),$$

- Smooth separation of components

Dense/low-p_{\rm T} Core (fluid) Dilute/high- $p_{\rm T}$ **Corona (non-eq. partons)**

Transverse ($|\eta_s| < 0.5$)

PbPb, $\sqrt{s_{\rm NN}} = 2.76 { m TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

PbPb, $\sqrt{s_{\rm NN}} = 2.76 { m TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

PbPb, $\sqrt{s_{\rm NN}} = 2.76 {\rm ~TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

PbPb, $\sqrt{s_{\rm NN}} = 2.76 {\rm ~TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

PbPb, $\sqrt{s_{\rm NN}} = 2.76 { m TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

PbPb, $\sqrt{s_{\rm NN}} = 2.76 { m TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

PbPb, $\sqrt{s_{\rm NN}} = 2.76 { m TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

pp, $\sqrt{s_{\rm NN}} = 7 {\rm TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

pp, $\sqrt{s_{\rm NN}} = 7 {\rm TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

pp, $\sqrt{s_{\rm NN}} = 7 {\rm TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

pp, $\sqrt{s_{\rm NN}} = 7 {\rm TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

pp, $\sqrt{s_{\rm NN}} = 7 {\rm TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

pp, $\sqrt{s_{\rm NN}} = 7 {\rm TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

pp, $\sqrt{s_{\rm NN}} = 7 {\rm TeV}$

Longitudinal (|y| < 0.5)

Dynamical conversion of energy into fluid

Dynamical conversion of energy into fluid

Dynamical conversion of energy into fluid

Dynamical conversion of energy into fluid

Dynamical conversion of energy into fluid

pp, $\sqrt{s_{\rm NN}} = 7 {\rm TeV}$

Results from DCCl2

DCCl2 framework

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Integrated model: DCCI2 Y. Kanakubo, YT, Hirano, PRC 105, no.2, 024905 (2022)

12

Fluidization rate in DCCl2 Y. Kanakubo, YT, Hirano, PRC 105, no.2, 024905 (2022)

Exp. Data: ALICE, Nature Phys. 13, 535-539 (2017); PLB728, 216-227 (2014)

*Deviation from data at low multiplicity can be attributed to PYTHIA default tuning

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Multiplicity dependence of Ω/π

- Smooth transition from vacuum to thermal
- good measure of fluidization rate
- Fixing parameters in DCCI process

Fluidization rate in DCCl2 Y. Kanakubo, YT, Hirano, PRC 105, no.2, 024905 (2022)

Core-corona composition rate

- Smooth multiplicity Scaling
- Core dominance at $dN_{\rm ch}/d\eta\gtrsim 20$ (even in pp!)

14

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Fluidization rate in DCCl2 Y. Kanakubo, YT, Hirano, PRC 105, no.2, 024905 (2022)

pp, $\sqrt{s_{\rm NN}} = 7 {\rm ~TeV}$

Significant contribution from both core and corona in wide ranges

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

PbPb, $\sqrt{s_{\rm NN}} = 2.76 {\rm ~TeV}$

Hadron composition from DCCI2 Y. Kanakubo, YT, Hirano, PRC 105, no.2, 024905 (2022)

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Multiplicity dep. of yeild ratios

- No further parameter tuning -
- Capture the trends -
- Dissociation/annihilation in hadronic scattering even in low-multiplicity

Puzzle: Very soft particles from hydro models

- Naive expectation: Soft particle spectra ←fluid (core) component dominant

Example) Trajectum (conventional hydro-based model)

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

7

Puzzle: Very soft particles from hydro models

- Naive expectation: Soft particle spectra \leftarrow fluid (core) component dominant

Example) Trajectum (conventional hydro-based model)

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Lack of soft particles ($p_T \lesssim 0.5$ GeV)

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Non-eq. corona component

Dominant at very low- $p_{\rm T}$ —

Compensate the yield shortage from hydro

18

Partons in corona component

- Produced according to power law
- Fragmented into soft hadrons

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Soft particles from corona Y. Kanakubo, YT, Hirano, PRC 105, no.2, 024905 (2022)

- Soften via hydrodynamization but hard enough to survive as non-eq. partons

Partons in corona component

- Produced according to power law
- Fragmented into soft hadrons

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Soft particles from corona Y. Kanakubo, YT, Hirano, PRC 105, no.2, 024905 (2022)

- Soften via hydrodynamization but hard enough to survive as non-eq. partons

Effect on studies of QGP transport properties Y. Kanakubo, YT, Hirano, PRC 105, no.2, 024905 (2022)

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Corona contributions to flow observables

- Weaker collectivity manifestation than pure fluid (core) contribution
- Simulations without corona
 → miss-extraction of transport coefficients
- Contribution from corona to polarized hadrons measured in HIC?

Effect on studies of QGP transport properties Y. Kanakubo, YT, Hirano, PRC 105, no.2, 024905 (2022)

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Corona contributions to flow observables

- Weaker collectivity manifestation than pure fluid (core) contribution
- Simulations without corona
 → miss-extraction of transport coefficients
- Contribution from corona to polarized hadrons measured in HIC?

Summary and overlook

Dynamical core-corona initialization (DCCI)

- Provide appropriate space-time dependence for QGP fluid production
- Smooth separation between equilibrated fluids (core) and nonequilibrated partons (corona)
- Unified description applicable from small to large systems
- Initial flow with geometrical fluctuation \rightarrow Vorticity in QGP fluid produced in HIC?

Fluidization rate extracted from hadron composition with DCCI

- Switches to core (fluid) dominance at $dN_{\rm ch}/d\eta \gtrsim 20$ even in pp
- $\gtrsim 15\%$ of hadrons from corona even in central PbPb

Corona dominance at very low- $p_{\rm T}$ in large systems

- Resolve the issue of insufficient particle production in hydro models
- Significantly impact QGP transport coefficients estimation from bulk observables

Corona contribution to polarized hadron measured in HIC?

Longitudinal profile of core-corona composition

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

- More corona in baryon-rich forward region in HIC \rightarrow Effects on transported quarks?

$J^{\nu}(x) = \sum_{i \in \text{non-eq. partons}} \left[-\frac{dp_i^{\nu}}{dt} \right] \rho \left(\vec{x} - \vec{x_i}(t) \right),$

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Dynamical Core-corona Picture Y. Kanakubo, et al., PTEP 2018, no.12, 121D01 (2018), PRC 101, no.2, 024912 (2020), PRC 105, no.2, 024905 (2022)

 p_i^0

$$\int_{i} \frac{dp_{i}^{\nu}}{dt} = \sum_{\substack{j \in \text{ partons}\\ j \neq i}} \sigma_{ij} |\vec{v}_{ij}^{\text{rel}}| p_{i}^{\nu} \rho\left(\vec{x}_{j}(t) - \vec{x}_{i}(t)\right),$$

$$\left\{\frac{\sigma_0}{s_{ij}/[1 \text{ (GeV^2)]}}, \pi b_{\text{cut}}^2\right\} \qquad \begin{array}{l} s_{ij} = (p_i^{\mu} + p_j^{\mu}) \\ b_{\text{cut}} \text{ infra-cut} \end{array}$$

 \rightarrow suppress interactions between partons in the same shower

Corona components from string modification

String modification caused by ..

- Spatial overlap of strings and medium
- Completely fluidized partons

- 1. Discard dead partons
- 2. Find hypersurface boundaries T_{sw}
- 3. Sample partons & boost with $v_{\rm fluid}$ at the boundary (recreation of color singlet)

Corona components from string modification (cont'd)

5. Make a pair for a parton coming out from medium

**p*_{*T*, cut}: threshold to/not to modify a string

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Collision with constituent partons of QGP fluids

Applied to both core (QGP fluids) and corona (non-equilibrated \rightarrow

$$\left| \begin{array}{c} \rho_{i,j} \sigma_{i,j} \\ \sigma_{i,j} \\ \sigma_{i,j} \\ \sigma_{rel,i,j} \\ \end{array} \right| p_i^{\mu}$$

Comparison with exp. data

PbPb 2.76 TeV, $p + \bar{p}$

Corona at very low p_T : possible compensation of yield

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Comparison with exp. data

PbPb 2.76 TeV, π^{\pm}

Corona at very low p_T : possible compensation of yield

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

Corona correction in PbPb

Y. Tachibana, ExHIC-p workshop, Taipei, March 15th, 2024

- Mean p_T and momentum anisotropy
- non-negligible effect of corona
- Pure hydro calculation can bring misinterpretation of exp. data even in PBPB

Transverse ($|\eta_s| < 0.5$)

PbPb, $\sqrt{s_{\rm NN}} = 2.76 { m TeV}$

Longitudinal (|y| < 0.5)

Courtesy from Yuuka Kanakubo

31

Transverse ($|\eta_s| < 0.5$)

PbPb, $\sqrt{s_{\rm NN}} = 2.76 { m TeV}$

Longitudinal (|y| < 0.5)

Courtesy from Yuuka Kanakubo

31

Transverse ($|\eta_s| < 0.5$)

pp, $\sqrt{s_{\rm NN}} = 7 {\rm TeV}$

Longitudinal (|y| < 0.5)

Transverse ($|\eta_s| < 0.5$)

pp, $\sqrt{s_{\rm NN}} = 7 {\rm TeV}$

Longitudinal (|y| < 0.5)

Dynamical conversion of energy into fluid

Dynamical conversion of energy into fluid

