Experimental study of in-medium

 spectral change of vector mesons and its polarization dependence at J-PARC.
K. Aoki

IPNS, KEK
J-PARC Hadron Section.

ExHIC-p workshop on polarization phenomena in nuclear collisions (Mar 16, 2024. Academia Sinica)

CONTENTS

- J-PARC E16 experiment ($p+A \rightarrow \phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$)
- Physics motivation (measure in-medium spectral change of VM)
- Experimental setup
- Staging strategy
- Expected results.
- Measurement of polarization dependence of spectral change.
- Motivation and principle of spin dependent measurement
- Expected spectra
- How to extract spin dependence
- J-PARC E88 : $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$
- Summary

Physics

- The origin of Hadron mass.
- The study of QCD vacuum
- Spontaneous breaking of the chiral symmetry.
- An order parameter: $\langle\bar{q} q\rangle \neq 0$
- Depends on temperature, and density
- Partially restored even at normal nuclear density.
- Could result in a measurable change in mass.
- $\langle\bar{q} q\rangle \sim 35 \%$ reduction at ρ_{0} for \boldsymbol{u} and \boldsymbol{d}. what about \boldsymbol{s} ?

NJL model
M. Lutz et al.

Nucl.Phys. A542,52(1992)

- $\langle\bar{q} q\rangle \leftarrow$ QCD sum rule \rightarrow mass
- J-PARC E16 experiment:
- Use $\mathbf{p}+\mathbf{A} \rightarrow \boldsymbol{\rho} / \boldsymbol{\omega} / \boldsymbol{\phi} \rightarrow \mathbf{e}+\mathbf{e -}$, ($\mathbf{K}^{+} \mathbf{K}^{-} \quad$ E88)
- Dielectron mass spectra are obtained.
- mixture of decay inside and outside the nuclear target.
- Sensitive to spectral change of vector mesons in the nuclear medium.
- Similar to KEK-E325, but collecting more data and doing more systematic study.

J-PARC E16

KEK-E325 results of ϕ meson

- The world's first results of ϕ modification.

Assumption In analysis

$$
\begin{aligned}
& \frac{m(\rho)}{m(0)}=1-k_{1}\left(\frac{\rho}{\rho_{0}}\right) \\
& \frac{\Gamma(\rho)}{\Gamma(0)}=1+k_{2}\left(\frac{\rho}{\rho_{0}}\right)
\end{aligned}
$$

- Conclusion: Mass decreases in nuclei!!
- Under the assumption of linear

$$
\beta \gamma=\mathrm{p} / \mathrm{M} \text { of } \phi
$$

QCD sum rule results

They provide mass of ϕ meson vs σ_{s} (strangeness sigma term) The σ_{s} indicates how much $\langle\bar{s} s\rangle$ is reduced in nuclear matter.

If one takes σ_{s} from Lattice and QCD sum rule, Mass reduction should be much smaller. (dM<~1\%)

$$
\begin{aligned}
& \langle\bar{s} S\rangle_{\rho}=\langle\bar{s} S\rangle_{0}+\langle N| \bar{S} S|N\rangle \rho \\
& \sigma_{S}=m_{S}\langle N| \bar{S} S|N\rangle \quad\left(=m_{5} \frac{\partial M_{N}}{\partial m_{s}}\right)
\end{aligned}
$$

The J-PARC E16 spectrometer

Staging approach

- RUN 0a/b/c/d - 2020,2021,2023-413hrs.
- 10 (SSD) +8 (GTR) +8 (HBD) +8 (LG) at last
- Gradually increased acceptance and reached interm. Goal.
- C+Cu targets
- Beam / Detector commissioning

RUN 1 (8 modules)

- RUN Oe - 2024 -- 222 hours.
- 8(SSD) +10 (GTR) + 8 (HBD) + 8 (LG)
- Beam / Detector comm. + yield.
- Upgraded Accelerator / DAQ. / Detectors.
- RUN 1 2024(?) -- 1280hrs (~53days)
- 10 (SSD) $+10(\mathrm{GTR})+8$ (HBD) $+8(\mathrm{LG})$
- Physics data taking. $\phi: 15 \mathrm{k}$ for Cu .

- RUN 2 -- 2560 hrs (107 days)
- 26 (SSD) +26 (GTR) +26 (HBD) +26 (LG)
- + Pb/CH2 target
- Needs additional budget.

High-p Area

Photo taken in 2019 or so.
Shield blocks now cover the area and hard to get this view.

J－PARC E16 Collaboration

－Riken ${ }^{\circ}$
－S．Yokkaichi （spokesperson）
－H．En’yo
－F．Sakuma
－KEK（E）KEK
－K．Aoki
－R．Honda
－K．Kanno
－Y．Morino
－R．Muto
－W．Nakai
－K．Ozawa
－S．Sawada
－M．Sekimoto
－H．Sugimura
－Univ．of Tokyo
－J．Kakunaga
恵京大学
－H．Murakami
－T．N．Murakami
－Kyoto Univ．
－M．Ichikawa
－S．Nagafusa
－S．Nakasuga
－M．Naruki
－S．Ochiai
－RCNP 多 RCNP
－S．Ashikaga
－H．Noumi
－K．Shirotori
－T．N．Takahashi
－Hiroshima Univ．

R．Ejima
R．Yamada
Y．L．Yamaguchi
－JASRI
－A．Kiyomichı
－Univ．Tsukuba
－T．Chujo
－S．Esumi
峝路大對
－T．Nonaka
－JAEA
－H．Sako
－S．Sato
－BNL 1 Brookhaven
－T．Sakaguchi
－Tohoku Univ．
－S．Kajikawa
－Academia Sinica
－C．－H Lin
－C．－S．Lin
－P．－H．Wang
－GSI

－J．Heuser
－A．R．Rodriguez
－M．Teklishyn
－Goethe Univ．
－D．R．Garces
－A．Toia

RUN1, Cu (INPUT:E325-BW) Excess ratio vs $\beta \gamma$

(Fit fails when vacuum shapes are used.)

- $\sim 15 \mathrm{k} \phi$ for Cu target expected in RUN1
- All $\beta \gamma$ bins for Cu are significant in E16
- (cf) E325 only fastest $\boldsymbol{\beta} \boldsymbol{\gamma}$ bin is significant.
- Larger excess in lower $\beta \gamma$ bin.
- The tendency becomes clearer and more significant compared to E325.
$\frac{N_{\text {excess }}}{N_{\text {excess }}+N_{\phi}}$

Momentum dependence (Dispersion relation)

- Momentum dependence of mass can be obtained for the first time.
- Expectation of RUN1 $\times 1.7$ is shown.
- Dispersion relation itself is an important property of pseudo particles.
- We can extrapolate mass into 0 momentum, where most of the QCDSR calculation results apply.
- More discussion on later slides.
H.Kim P. Gubler PLB805, 10 (2020)extends the validity of momentum range. Show you on later slides.

Expected in RUN2

- RUN2 stat (320shifts)
-INPUT: E325-BW
- Pb target
- $\beta \gamma<0.5$

Measurement of polarization dependence

Pol dependence of mass distribution

- PLB805 (2020) 135412, Kim-Gubler
- Prediction of the dispersion relation of phi meson based on the QCD sum rule.
- Polarization dependence.
- Interesting to see it experimentally.

- Decay angle $\phi \rightarrow$ e+e / K+K-
- Expected spectrum
- Based on E325-type model calc.
- How can we experimentally separate
- Finding orthogonal functions.
- Do the methods work?

Dispersion relation up to $3 \mathrm{GeV} / \mathrm{c}$

Anomaly-induced chiral mixing of ϕ and $f_{1}(1420)$

- Genuine signal of chiral symmetry restoration:

Degeneracy of chiral partner! by theorists.

- Phys. Rev. D106, 5 (2022) C. Sasaki
- Chiral mixing effect in dense matter behaves differentlyTransverse when chiral symmetry is restored.
- T(Transverse) affected. L(Longitudinal) stays.
- Motivation for T / L separation

$$
\begin{aligned}
& \mathrm{p}=1.0 \mathrm{GeV} / \mathrm{c} \\
& \mathrm{~T}=50 \mathrm{MeV} \\
& \rho=2.5 \rho_{0}
\end{aligned}
$$

Polarization $\leftarrow \rightarrow$

Helicity rest frame (of $\boldsymbol{\phi}$ meson)

Angular dist. in helicity rest frame

- Phys. Rev. D 107, 074033(2023)
I.W. Park, H. Sako, K.A., P.Gubler, S.H.Lee
- $\phi \rightarrow$ ee
- Spin 1 is taken by the spin of ee.
- $\cos \theta= \pm 1: T 100 \%$
$\bullet \cdot \cos \theta=0: L 50 \%, T 50 \%$
- Small FSI
- Limited acceptance at $\cos \theta= \pm 1$

$\boldsymbol{\phi} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{vs} \boldsymbol{\phi} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$

$\phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

- Spin 1 is taken by ee pol.
(2) $\cos \theta= \pm 1:$ T 100%
© $\cdot \cos \theta=0: \mathrm{L} 50 \%$, T 50%
©- Small FSI
© \cdot Small BR $\left(2.98 \times 10^{-4}\right)$
- 15k for 53 days (E16 Run1)

$\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$

- Spin 1 is taken by KK OAM
- $\cos \theta= \pm 1: L 100 \%$
- $\cos \theta=0:$ T 100%
© - Suffer from FSI
- Treated by transport model
© - Large BR (49.1\%)
- 260k for 30 days (E88)

Play with Kim-Gubler model to get expected mass spectra

- PLB 805, 10 (2020)
- T: Transverse / L: Longitudinal
- $\mathrm{T}: \mathrm{L}=2: 1$
- I replaced the shift with the E325 value.

$$
\frac{m_{\phi}^{\mathrm{L} / \mathrm{T}}\left(\rho_{N}, \vec{q}\right)}{m_{\phi}^{\mathrm{vac}}}=1+\left(a+b^{\mathrm{L} / \mathrm{T}}|\vec{q}|^{2}\right) \frac{\rho_{N}}{\rho_{0}}
$$

- KG param
- $b(T)=0.067$ pm 0.0034
- $b(L)=-0.0048$ pm $0.0008 / \mathrm{GeV}$
- $a=-0.0067$

- $K G+E 325$ param
- $a=0.034$
- b : same as KG param.

Monte Carlo simulation input

- Momentum distribution is taken from JAM.
- Mass: Breit-Wigner distribution.
- Internal Radiative Correction (IRC)
- Calculated by PHOTOS
- IRC makes a tail on the lower side.

E325-type calculation using KG param.

- E325 model assumption
- Density assumed to be WS potential shape.
- ϕ production probability proportional to density.
- According to mass-number dependence of σ ($\left.\sigma_{p A} \sim A\right)$
- \# of entries is arbitrary.
- (cf) Run1 exp: ~1.7k ($\boldsymbol{\beta} \boldsymbol{\gamma}<1.25$), Run2 exp: 12k for ($\boldsymbol{\beta} \boldsymbol{\gamma}<1.25$)
- Smearing (mimic experimental effect)
- Mass by $7 \mathrm{MeV} / \mathrm{c}^{2}, \cos (\theta)$ by 0.01

Basic idea: find orthogonal func. (to extract T. mass)

- $G(m, x)$:Measured mass (m) and angle $(x=\cos \theta)$ distribution:

$$
G(m, x)=g_{T}(m) f_{T}(x)+g_{L}(m) f_{L}(x)
$$

- $g_{T, L}(m)$: Mass distribution for T and L.
- $f_{T, L}(x)$: Daughter particle's angular distribution for T and L.

$$
\begin{array}{r}
f_{T}(x) \propto\left(1+x^{2}\right) \\
f_{L}(x) \propto\left(1-x^{2}\right)
\end{array}
$$

- If we can find a function $h_{T}(x)$ that is orthogonal to $f_{L}(x)$
- $h_{T}(x)$: eliminates L and what's left is T.

Finding orthogonal functions

- The Gram-Schmidt's method:
- Assume we have $\alpha_{1}(x), \alpha_{2}(x)$ and build two functions:

$$
\begin{aligned}
& \alpha_{1} \\
& \alpha_{2}-\frac{\left\langle\alpha_{1} \cdot \alpha_{2}\right\rangle}{\left\langle\alpha_{1} \cdot \alpha_{1}\right\rangle} \alpha_{1}
\end{aligned} \quad\left\langle\alpha_{1} \cdot \alpha_{2}\right\rangle=\int_{a}^{b} \alpha_{1}(x) \alpha_{2}(x) d x
$$

- $h_{L}(x)$: (orthogonal to $f_{T}=$ eliminates T) extracts L.
- $h_{T}(x)$: (orthogonal to $f_{L}=$ eliminates L) extracts T .

$$
\left.\begin{array}{c}
x=\cos \theta=[-1,1] \\
f_{T}=1+x^{2} \\
f_{L}=1-x^{2} \\
h_{T}=5 x^{2}-1 \\
h_{L}=2-5 x^{2}
\end{array}\right) \quad \begin{aligned}
& x=\cos \theta=[-0.8,0.8] \\
& f_{T}=1+x^{2} \\
& f_{L}=1-x^{2} \\
& h_{L}=3.1897-13.108 x^{2} \\
& h_{T}=13.1077 x^{2}-2.18963
\end{aligned}
$$

The method applied. for $\boldsymbol{\beta} \boldsymbol{\gamma}<1.25$ sample.

- $\cos \theta=[-1,1]$
hist_mass_irc7_extracttrans_bg125

- $\cos \theta=[-0.8,0.8]$
hist_mass_irc7_long_bg125

LINE : According to polarization information which God only knows
$+\quad:$ Extracted using the orthogonal functions $h_{T}(x), h_{L}(x)$

Same statistics but different angular acceptance
in the rest frame of $\boldsymbol{\phi}$.

- $\cos \theta=[-1,1]$
hist_mass_irc7_extractlong_bg125

- $\cos \theta=[-0.7,0.7]$
hist_mass_irc7_extractlong_bg125

- $\cos \theta=[-0.5,0.5]$
hist_mass_irc7_extractlong_bg125

Angular acceptance in the rest frame of $\boldsymbol{\phi}$.

- GEANT4 as an acceptance filter.
- Notes on the plot
- \# of entry is arbitrary.
- Transverse pol fraction is overlayed.
- Results
- Smaller acceptance for $\cos \theta= \pm 1$
- LG trig eff $\sim 90 \% 0.4 \mathrm{GeV}, \sim 75 \% 0.3 \mathrm{GeV}$
- Reality is between Green and black.
- Needs acceptance correction for analysis.
- $\cos \theta=[-0.7,0.7]$ maybe used w/ correction but rather marginal.

$J-P A R C$ E88 : pA $\rightarrow \phi_{w} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$

- 6 forward modules (detector unit) in top and bottom layers
- MRPC (Multi-gap Resistive Plate Chamber) and TSC(Track start counter) for Time-of-Flight measurement
- AC (Aerogel Cherenkov Counter) for pion rejection
- SSDs (Silicon Strip Detectors) and GTRs (GEM Trackers) for tracking

Distinguishing ϕ polarization at E88

Orthogonal functions for K+K-

- We can also find orthogonal functions for KK
- Thanks to the high statistics and lucky distribution, we may simply select sweet spots (near cos=1 or 0) to see the spectrum.
- KK

$$
\begin{gathered}
x=\cos \theta=[-1,1] \\
f_{T}(x)=\left(1-x^{2}\right) \\
f_{L}(x)=x^{2} \\
h_{T}(x)=\frac{1}{2}\left[3-5 x^{2}\right] \\
h_{L}(x)=\frac{1}{2}\left[5 x^{2}-1\right]
\end{gathered}
$$

- ee

$$
\begin{aligned}
& x=\cos \theta=[-1,1] \\
& f_{T}=1+x^{2} \\
& f_{L}=1-x^{2} \\
& h_{T}=5 x^{2}-1 \\
& h_{L}=2-5 x^{2}
\end{aligned}
$$

Polarization-dependent mass measurement

- Model independent T / L separation is pursued here for ee.
- Note: Model comparison is possible w/o separating T/L experimentally.
- Need further consideration
- Angular dependence of acceptance/efficiency.
- Background effects
- Increase statistics / acceptance if necessary
- Widen acceptance for low momentum particles.
- Covering wider acceptance, closer to the targets.
- KK performs better in terms of polarization dependence measurement although FSI need to be taken care of.

Summary

- J-PARC E16 will measure ee in pA collisions at 30 GeV to study the origin of hadron mass through the spectral change of vector mesons in the nuclear medium.
- We gradually increased our acceptance and reached an intermediate goal (RUN1), which is $1 / 3$ of the design configuration(RUN2).
- We are preparing for Run0e planned in 2024.
- Get PAC approval for RUN1 (1st physics runs).
- The possibility of measuring polarization-dependent mass modification.
- Extraction method.
- Its results. (further realistic consideration needed.)
- E88 (KK) performs better in terms of pol measurement. Commentary each other.

Expected S/B

p+Cu, JAM event generator + GEANT4

- $\mathrm{S} / \mathrm{B} \sim 7.1$ (integral in 1.013-1.028 GeV/c²)
~ 27 (at the ϕ peak)
w/KK trigger, w/ PID cuts

Simple method（maybe easier to subt．BG）

－Divide sample into two：Say，$A=\{x ;|x|>0.5\}, B=\{x ;|x|<0.5\}$
－（Subtract BG at this point．）

$$
\begin{aligned}
G_{A}(m) & =\int_{A} G(m, x) \\
& =\int_{A} g_{T}(m) f_{T}(x)+g_{L}(m) f_{L}(x) d x \\
& =g_{T}(m) \int_{A} f_{T}(x) d x+g_{L}(m) \int_{A} f_{L}(x) d x \\
& \equiv C \cdot g_{T}(m)+D \cdot g_{L}(m)
\end{aligned}
$$

$$
\begin{aligned}
G_{B}(m) & =\int_{B} G(m, x) \\
& =\int_{B} g_{T}(m) f_{T}(x)+g_{L}(m) f_{L}(x) d x \\
& \equiv E \cdot g_{T}(m)+F \cdot g_{L}(m)
\end{aligned}
$$

角度サンプルA $=C \times$ Trans $+D \times$ Long

$$
\text { 角度サンプルB }=E \times \text { Trans }+F \times \text { Long }
$$

－Then solve them．（連立一次方程式）

$$
\begin{aligned}
g_{T}(m) & =\frac{F \cdot G_{A}(m)-D \cdot G_{B}(m)}{C F-D E} \\
g_{L}(m) & =\frac{E \cdot G_{A}(m)-C \cdot G_{B}(m)}{D E-F C}
\end{aligned}
$$

Expected statistics

Beam time: 30 days with 30 GeV proton beam at 10^{9} / spill

- C (0.1% int. $)+\mathrm{Cu}(0.1 \%$ int. $)+$ new $\mathrm{Pb}(0.1 \%$ int.) target

$\phi \rightarrow$ K+K- signals				E325	
	C	Cu	Pb	C	Cu
Total ϕ	$159 k$	$262 k$	$662 k$	419	833
$\phi(\beta \gamma<1.25)$	$72 k$	$113 k$	$314 k$		
$\phi(1.25<\beta \gamma<1.75)$	$84 k$	$146 k$	$340 k$		

| $\phi \rightarrow$ K + K- rate | | | F. Sakuma, et al,
 PRL 98,152302 |
| :--- | :--- | :--- | :--- | :--- |
| | C 2007) | | |

Information from p- ϕ interaction Attractive interaction \rightarrow mass reduction
arXiv: 2212.12690 Two-particle correlation

HAL QCD method, arXiv:2205.10544 (2022)
$a_{0}^{(3 / 2)}=-1.43(23) \mathrm{fm}$
$r_{0}^{(3 / 2)}=2.36(10) \mathrm{fm}$
ALICE: Phys. Rev. Lett. 127, 172301(2021)
$d_{0}=7.85 \pm 1.54$ (stat.) ± 0.26 (syst.) fm
$\Re\left(f_{0}\right)=0.85 \pm 0.34$ (stat.) ± 0.14 (syst.) fm
$\Im\left(f_{0}\right)=0.16 \pm 0.10$ (stat.) ± 0.09 (syst.) fm
ALICE-HAL: arXiv: 2212.12690
$\operatorname{Re} f_{0}^{(1 / 2)}=-1.47_{-0.37}^{+0.44}$ (stat. $)_{-0.17}^{+0.14}$ (syst.) fm,
$\operatorname{Re} d_{0}^{(1 / 2)}=+0.37_{-0.08}^{+0.07}(\text { stat. })_{-0.03}^{+0.03}($ syst. $) \mathrm{fm}$,

