Experimental study of in-medium spectral change of vector mesons and its polarization dependence at J-PARC. K. Aoki IPNS, KEK J-PARC Hadron Section.

ExHIC-p workshop on polarization phenomena in nuclear collisions (Mar 16, 2024. Academia Sinica)

CONTENTS

- J-PARC E16 experiment ($p+A \rightarrow \phi \rightarrow e^+e^-$)
 - Physics motivation (measure in-medium spectral change of VM)
 - Experimental setup
 - Staging strategy
 - Expected results.
- Measurement of polarization dependence of spectral change.
 - Motivation and principle of spin dependent measurement
 - Expected spectra
 - How to extract spin dependence
 - J-PARC E88 : $\phi \rightarrow K^+K^-$
- Summary

Physics

- The origin of Hadron mass.
- The study of QCD vacuum
 - Spontaneous breaking of the chiral symmetry.
 - An order parameter: $\langle \bar{q}q \rangle \neq 0$
 - Depends on temperature, and density
 - Partially restored even at normal nuclear density.
 - Could result in a measurable change in mass.
 - $\langle \bar{q}q \rangle \sim 35\%$ reduction at ρ_0 for **u** and **d** what about **s**?
 - $\langle \bar{q}q \rangle \leftarrow QCD$ sum rule \rightarrow mass
- J-PARC E16 experiment:
 - Use $\mathbf{p} + \mathbf{A} \rightarrow \rho / \omega / \phi \rightarrow \mathbf{e} + \mathbf{e}$, ($\mathbf{K} + \mathbf{K}$ E88)
 - Dielectron mass spectra are obtained.
 - mixture of decay inside and outside the nuclear target.
 - Sensitive to spectral change of vector mesons in the nuclear medium.
 - Similar to KEK-E325, but collecting more data and doing more systematic study.

NJL model M. Lutz et al. Nucl.Phys. A542,52(1992)

J-PARC E16

QCD sum rule results

They provide mass of ϕ meson vs σ_s (strangeness sigma term) The σ_s indicates how much $\langle \bar{s}s \rangle$ is reduced in nuclear matter.

Staging approach

- RUN 0a/b/c/d 2020,2021,2023-413hrs.
 - 10 (SSD) + 8 (GTR) + 8 (HBD) + 8 (LG) at last
 - Gradually increased acceptance and reached interm. Goal.
 - C+Cu targets
 - Beam / Detector commissioning

PAC approved • RUN 0e - 2024 -- 222 hours.

- 8(SSD) + 10 (GTR) + 8 (HBD) + 8 (LG)
- Beam / Detector comm. + yield.
- Upgraded Accelerator / DAQ. / Detectors.
- **RUN 1 2024(?)** -- 1280hrs (~53days)
 - 10 (SSD) + 10 (GTR) + 8 (HBD) + 8(LG)
 - Physics data taking. ϕ : 15k for Cu.
- **RUN 2** -- 2560 hrs (~107 days)
 - 26 (SSD) + 26 (GTR) + 26 (HBD) + 26 (LG)
 - + Pb/CH2 target
 - Needs additional budget.

RUN 1 (8 modules)

High-p Area

Photo taken in 2019 or so. Shield blocks now cover the area and hard to get this view.

Run0b/c configuration(2021)

J-PARC E16 Collaboration

- RIKEN
 - S. Yokkaichi ٠ (spokesperson)
 - H. En'yo
 - F. Sakuma
- KEK 💿 KEK
 - K. Aoki
 - R. Honda
 - K. Kanno •
 - Y. Morino
 - R. Muto
 - W. Nakai •
 - K. Ozawa
 - S. Sawada
 - M. Sekimoto •
 - H. Sugimura

- Univ. of Tokyo
- 東京大学 – J. Kakunaga
- H. Murakami
- T.N. Murakami
- Kyoto Univ.
 - M. Ichikawa
 - S. Nagafusa
 - S. Nakasuga
 - M. Naruki
 - S. Ochiai
- **RCNP** RCNP
 - S. Ashikaga
 - H. Noumi
 - K. Shirotori
 - T.N. Takahashi

MAS

NiAS •

٠

•

•

H. Hamagaki

- Hiroshima Univ. K. Shigaki 🕘 広島大学

 - R. Ejima
 - R. Yamada Y.L. Yamaguchi
- JASRI •
 - A. Kiyomichi
- Univ. Tsukuba 🏄
 - T. Chujo 筑波大学
 - S. Esumi
 - T. Nonaka
- JAEA (JAEA – H. Sako
 - S. Sato
- Brookhaven BNL • National Laboratory
 - T. Sakaguchi
- Tohoku Univ. – S. Kajikawa

- Academia Sinica •
 - W.-C. Chang
 - C.-H Lin
 - C.-S. Lin
 - P.-H. Wang
- GSI ٠

JASRI

東北大学

- J. Heuser
- A.R. Rodriguez _
- M. Teklishyn ____
- Goethe Univ. •
 - D.R. Garces
 - A. Toia

GOETHE

NIVERSIT

RUN1, Cu (INPUT:E325-BW) Excess ratio vs $\beta\gamma$

- $\sim 15 \text{k} \phi$ for Cu target expected in RUN1
- All $\beta\gamma$ bins for Cu are significant in E16
- (cf) E325 only fastest $\beta\gamma$ bin is significant.

- Larger excess in lower $\beta\gamma$ bin.
- The tendency becomes clearer and more significant compared to E325.

Momentum dependence (Dispersion relation)

- Momentum dependence of mass can be obtained for the first time.
- Expectation of RUN1 x 1.7 is shown.
- Dispersion relation itself is an important property of pseudo particles.
- We can extrapolate mass into 0 momentum, where most of the QCDSR calculation results apply.
- More discussion on later slides.

H.Kim P. Gubler PLB805, 10 (2020) extends the validity of momentum range. Show you on later slides.

Expected in RUN2

- RUN2 stat (320shifts)
- INPUT: E325-BW
- Pb target
- $\beta\gamma < 0.5$

Measurement of polarization dependence

Pol dependence of mass distribution

- PLB805 (2020) 135412, Kim-Gubler
 - Prediction of the dispersion relation of phi meson based on the QCD sum rule.
 - Polarization dependence.
 - Interesting to see it experimentally.
- Decay angle $\phi \rightarrow$ e+e / K+K-
- Expected spectrum
 - Based on E325-type model calc.
- How can we experimentally separate
 - Finding orthogonal functions.
- Do the methods work?

Anomaly-induced chiral mixing of ϕ and $f_1(1420)$

- Genuine signal of chiral symmetry restoration: Degeneracy of chiral partner! by theorists.
- Phys. Rev. D106, 5 (2022) C. Sasaki
 - Chiral mixing effect in dense matter behaves differently Transverse when chiral symmetry is restored.
 - T(Transverse) affected. L(Longitudinal) stays.

р

Motivation for T/L separation

$$= 1.0 \text{GeV/c}$$

$$= 50 \text{ MeV}$$

$$= 2.5 \rho_0$$

$$= 2.5 \rho_0$$

$$= 10^{-1} \text{ (mixing)}$$

$$= 0.8 \text{ (0.85 0.9 0.95 1 1.05 1.1 1^{-1.15 1.2})}$$

Longitudinal

Gev

Polarization $\leftarrow \rightarrow$ Angular dist. in helicity rest frame

• Phys. Rev. D 107, 074033(2023) I.W. Park, H. Sako, K.A., P.Gubler, S.H.Lee

• *φ* → ee

 (\bigcirc)

- Spin 1 is taken by the spin of ee.
 - $\bullet \ \cos \theta = \pm 1 : \top \ 100\%$
- $\cos \theta = 0 : L 50\%, T 50\%$
- Small FSI
- Limited acceptance at $\cos \theta = \pm 1$

Helicity rest frame (of **\u03c6** meson)

 $\phi \rightarrow e^+e^- vs \phi \rightarrow K^+K^-$

$\phi \rightarrow e^+e^-$

- Spin 1 is taken by ee pol.
- $\cos \theta = 0 : L 50\%, T 50\%$
- 🕞 Small FSI
- Small BR (2.98 x 10⁻4)
 - 15k for 53 days (E16 Run1)

 $\phi \rightarrow \mathsf{K}^+\mathsf{K}^-$

- Spin 1 is taken by KK OAM
- $\bigcirc \bullet \cos \theta = \pm 1 : L \ 100\%$
- $\bigcirc \bullet \cos \theta = 0 : \mathsf{T} \ 100\%$
- Suffer from FSI
 - Treated by transport model
- 🗇 Large BR (49.1%)
 - 260k for 30 days (E88)

Play with Kim-Gubler model to get expected mass spectra

- PLB 805, 10 (2020)
 - T: Transverse / L: Longitudinal
 - T : L = 2:1
- I replaced the shift with the E325 value.

• KG param

- KG + E325 param
 - a=0.034
 - b : same as KG param.

19

Monte Carlo simulation input

- Momentum distribution is taken from JAM.
- Mass: Breit-Wigner distribution.
- Internal Radiative Correction (IRC)
 - Calculated by PHOTOS
 - IRC makes a tail on the lower side.

E325-type calculation using KG param.

- E325 model assumption
 - Density assumed to be WS potential shape.
 - ϕ production probability proportional to density.
 - According to mass-number dependence of σ ($\sigma_{pA} \sim A$)
 - # of entries is arbitrary.
 - (cf) Run1 exp: ~1.7k ($\beta\gamma$ <1.25), Run2 exp: 12k for ($\beta\gamma$ <1.25)
- Smearing (mimic experimental effect)
 - Mass by 7 MeV/c², $\cos(\theta)$ by 0.01

Basic idea: find orthogonal func. (to extract T. mass)

• G(m, x) : Measured mass (m) and angle $(x = \cos \theta)$ distribution:

$$G(m,x) = g_T(m) f_T(x) + g_L(m) f_L(x)$$
Measured Want to know Known Want to know Known

- $g_{T,L}(m)$: Mass distribution for T and L.
- $f_{T,L}(x)$: Daughter particle's angular distribution for T and L. $f_T(x) \propto (1 + x^2)$ $f_L(x) \propto (1 - x^2).$
- If we can find a function $h_T(x)$ that is orthogonal to $f_L(x)$ • $h_T(x)$: eliminates L and what's left is T

 $= g_T(m) \int_0^b f_T(x)h_T(x)dx$ 22

 $= g_T(m) \times \text{Const.}$

Finding orthogonal functions

- The Gram-Schmidt's method:
 - Assume we have $\alpha_1(x), \alpha_2(x)$ and build two functions:

$$\begin{array}{c} \alpha_1 \\ \alpha_2 - \frac{\langle \alpha_1 \cdot \alpha_2 \rangle}{\langle \alpha_1 \cdot \alpha_1 \rangle} \alpha_1 \end{array} > Orthogonal to each other \end{array}$$

$$\langle \alpha_1 \cdot \alpha_2 \rangle = \int_a^b \alpha_1(x) \alpha_2(x) dx$$

- $h_L(x)$: (orthogonal to f_T = eliminates T) extracts L.
- $h_T(x)$: (orthogonal to f_L = eliminates L) extracts T.

$$x = \cos \theta = [-1,1]$$

$$f_T = 1 + x^2$$

$$f_L = 1 - x^2$$

$$h_T = 5x^2 - 1$$

$$h_L = 2 - 5x^2$$

$$\begin{aligned} x &= \cos \theta = [-0.8, 0.8] \\ f_T &= 1 + x^2 \\ f_L &= 1 - x^2 \\ h_L &= 3.1897 - 13.108x^2 \\ h_T &= 13.1077x^2 - 2.18963 \end{aligned}$$

23

The method applied. for $\beta\gamma$ < 1.25 sample.

• $\cos \theta = [-1,1]$

• $\cos \theta = [-0.8, 0.8]$

- LINE : According to polarization information which God only knows
- + : Extracted using the orthogonal functions $h_T(x)$, $h_L(x)$

Same statistics but different angular acceptance in the rest frame of ϕ .

• $\cos \theta = [-1,1]$

•
$$\cos \theta = [-0.7, 0.7]$$

•
$$\cos \theta = [-0.5, 0.5]$$

Angular acceptance in the rest frame of ϕ .

- GEANT4 as an acceptance filter.
 - Notes on the plot
 - # of entry is arbitrary.
 - Transverse pol fraction is overlayed.
 - Results
 - Smaller acceptance for $\cos \theta = \pm 1$
 - LG trig eff ~90% 0.4GeV, ~75% 0.3GeV
 - Reality is between Green and black.
- Needs acceptance correction for analysis.
- $\cos \theta = [-0.7, 0.7]$ maybe used w/ correction but rather marginal.

- 6 forward modules (detector unit) in top and bottom layers
- MRPC (Multi-gap Resistive Plate Chamber) and TSC(Track start counter) for Time-of-Flight measurement
- AC (Aerogel Cherenkov Counter) for pion rejection
- SSDs (Silicon Strip Detectors) and GTRs (GEM Trackers) for tracking

Distinguishing ϕ polarization at E88

- Full acceptance in kaon decay angle

Orthogonal functions for K+K-

- We can also find orthogonal functions for KK
- Thanks to the high statistics and lucky distribution, we may simply select sweet spots (near cos=1 or 0) to see the spectrum.

• KK

$$\begin{aligned} x &= \cos \theta = [-1,1] \\ f_T(x) &= (1-x^2) \\ f_L(x) &= x^2 \\ h_T(x) &= \frac{1}{2} [3-5x^2] \\ h_L(x) &= \frac{1}{2} [5x^2-1] \end{aligned}$$

• ee

$$x = \cos \theta = [-1,1]$$

$$f_T = 1 + x^2$$

$$f_L = 1 - x^2$$

$$h_T = 5x^2 - 1$$

$$h_L = 2 - 5x^2$$

Polarization-dependent mass measurement

- Model independent T/L separation is pursued here for ee.
 - Note: Model comparison is possible w/o separating T/L experimentally.
- Need further consideration
 - Angular dependence of acceptance/efficiency.
 - Background effects
 - Increase statistics / acceptance if necessary
 - Widen acceptance for low momentum particles.
 - Covering wider acceptance, closer to the targets.
- KK performs better in terms of polarization dependence measurement although FSI need to be taken care of.

Summary

- J-PARC E16 will measure ee in pA collisions at 30GeV to study the origin of hadron mass through the spectral change of vector mesons in the nuclear medium.
- We gradually increased our acceptance and reached an intermediate goal (RUN1), which is 1/3 of the design configuration(RUN2).
- We are preparing for Run0e planned in 2024.
 - Get PAC approval for RUN1 (1st physics runs).
- The possibility of measuring polarization-dependent mass modification.
 - Extraction method.
 - Its results. (further realistic consideration needed.)
 - E88 (KK) performs better in terms of pol measurement. Commentary each other.

Expected S/B

p+Cu, JAM event generator + GEANT4

- S/B ~ 7.1 (integral in 1.013-1.028 GeV/c²)
 - ~ 27 (at the ϕ peak)

w/KK trigger, w/ PID cuts

Simple method (maybe easier to subt. BG)

- Divide sample into two : Say, A ={x; |x|>0.5}, B={x; |x|<0.5}
 - (Subtract BG at this point.)

$$G_A(m) = \int_A G(m, x)$$

$$= \int_A g_T(m) f_T(x) + g_L(m) f_L(x) dx$$

$$= g_T(m) \int_A f_T(x) dx + g_L(m) \int_A f_L(x) dx$$

$$\equiv C \cdot g_T(m) + D \cdot g_L(m)$$

$$G_B(m) = \int_B G(m, x)$$

$$= \int_B g_T(m) f_T(x) + g_L(m) f_L(x) dx$$

$$\equiv E \cdot g_T(m) + F \cdot g_L(m)$$

角度サンプルA = C x Trans + D x Long

角度サンプルB = Ex Trans + Fx Long

• Then solve them. (連立一次方程式) $g_T(m) = \frac{F \cdot G_A(m) - D \cdot G_B(m)}{CF - DE}$ $g_L(m) = \frac{E \cdot G_A(m) - C \cdot G_B(m)}{DE - FC}$

Expected statistics

Beam time: 30 days with 30 GeV proton beam at 10⁹ / spill

• C (0.1% int.) + Cu (0.1% int.) + new Pb (0.1% int.) target

φ→K+K- signals				E3	E325	
	С	Cu	Pb	С	Cu	
Total φ	159k	262k	662k	419	833	
φ (βγ<1.25)	72k	113k	314k			
φ (1.25<βγ<1.75)	84k	146k	340k			
φ→K+K- rate				F. Sal	F. Sakuma, et a	
	С	Cu	Pb		0, 10200	
φ signal rate (/spill)	2.95	5.41	12.8			
Trigger rate (/spill)	78	161	365			

