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Global Λ-polarization
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▶ Global polarization: polarization of Λ-hyperons along
angular-momentum direction

Can be well explained by considering thermal vorticity on freeze-out

hypersurface Sµ
ϖ = −ϵµναβkν

∫
dΣλk

λf0(1−f0)ϖαβ

8m
∫
dΣλkλf0

ϖµν := − 1
2
(∂µβν − ∂νβµ), β

µ := uµ/T , f0 = [exp(uµkµ/T ) + 1]−1
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Local Λ-polarization
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▶ Local polarization:
Angle-dependent polarization of
Λ-hyperons along
beam-direction

Could only be explained
recently by incorporating
shear effects (neglecting
temperature gradients)

Sµ
ξ = −ϵµναβkν

∫
dΣλk

λf0(1−f0)t̂α
kγ

k0 Ξγβ

4mT
∫
dΣλkλf0
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F. Becattini, M. Buzzegoli, G. Inghirami, I. Karpenko, A.

Palermo, PRL 127 (2021) 272302

ωµν := 1
2
(∂µuν − ∂νuµ), Ξµν := 1

2
(∂µuν + ∂νuµ), ∆

µν := gµν − uµuν
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Open questions
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Sµ
ϖ = −ϵµναβkν

∫
dΣλk

λf0(1− f0)ϖαβ

8m
∫
dΣλkλf0

▶ Traditional approaches to computing the polarization

assume equilibrated spin degrees of freedom
neglect dissipative quantities

▶ Not clear so far:

(I) How fast do spin degrees of freedom equilibrate?
(II) How do dissipative effects influence polarization?

▶ This talk: Provide an estimate for the answer to question (I)
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Spin Hydrodynamics: Basics
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▶ Hydrodynamics is based on conservation laws
Consider a system of uncharged fields

→ Should conserve energy-momentum and total angular momentum

Conservation laws

∂µT
µν = 0 (1a)

∂λJ
λµν =: ℏ∂λSλµν + T [µν] = 0 (1b)

▶ 10 equations for 16+24 quantities
▶ Additional information about dissipative quantities has to be provided

Possibilities: Microscopic theories (e.g., kinetic theory), gradient
expansion, . . .

▶ This talk: Consider ideal spin hydrodynamics

(with input from kinetic theory)
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A[µBν] := AµBν −AνBµ
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Ideal spin hydrodynamics
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Definition

Ideal (spin) hydrodynamics is characterized by the fact that the
conservation laws (together with an equation of state) completely
determine the evolution of the conserved currents.

▶ What are the quantities at our disposal?

Symmetric part of Tµν characterized by energy density ε, pressure P ,
and four-velocity uµ

Spin tensor characterized by spin potential Ωµν = −Ωνµ

Decomposition: Ωµν = u[µκν] + ϵµναβuαωβ

Building blocks

▶ Scalars: ε, P

▶ Vectors: uµ, κµ

▶ Pseudovectors: ωµ
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Interlude: Equilibria
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Global equilibrium

▶ The inverse four-temperature βµ := uµ/T is a Killing vector,
∂µβν + ∂νβµ = 0

▶ The spin potential is equal to the thermal vorticity,
Ωµν = ϖµν := −1

2 (∂
µβν − ∂νβµ)

▶ Entropy is exactly conserved, ∂µS
µ = 0

Local equilibrium

▶ No restriction on the inverse four-temperature

▶ No restriction on the spin potential

▶ Entropy is conserved up to (small) quantum corrections, ∂µS
µ ≈ 0

▶ Ideal hydrodynamics is based on the concept of local equilibrium
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Decomposition of Sλµν
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▶ Demand that the spin tensor is linear in the spin potential

Form of Sλµν

Sλµν = AuλΩµν +BuλuαΩ
α[µuν] + CuλΩα[µ∆ν]

α

+DuαΩ
α[µ∆ν]λ + E∆λ

αΩ
α[µuν]

= (A−B − C)uλu[µκν] + Eu[µϵν]λαβuαωβ

+ (A− 2C)uλϵµναβuαωβ +Dκ[µ∆ν]λ

▶ The objects A, . . . , E are functions of ε, have to be fixed by
microscopic theory.
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Decomposition of T µν
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▶ Split into symmetric and antisymmetric part, Tµν = 1
2T

(µν) + 1
2T

[µν]

Form of T µν

Tµν = εuµuν − P∆µν +
1

2
T [µν] ,

T [µν] = −ℏ2Γ(κ)
(
u[µκν] − uαϖ

α[νuµ]
)
+ ℏ2Γ(ω)

(
ϵµναβuαωβ −ϖ⟨µ⟩⟨ν⟩

)
▶ Features of T [µν]:

Vanishes in global equilibrium
Follows from quantum kinetic theory
Factor of ℏ2 → second-order quantum effect

A⟨µ⟩ := ∆µνAν
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Equations of motion and setup
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▶ Goal: include quantum effects to leading order → O(ℏ)
▶ Since T [µν] ∼ O(ℏ2), we can neglect it for energy-momentum

conservation

Conservation equations

∂µT
(µν) = 0 +O(ℏ2) , (2a)

∂λS
λµν =

1

ℏ
T [νµ] +O(ℏ2) . (2b)

▶ Spin potential does not enter the conservation of energy and
momentum at this order!

→ No backreaction of spin on fluid evolution, fluid profile serves as input
for spin potential

▶ Choice in this work: fluid at rest, uµ = const., ε = const.,
P = const.
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Spin equations of motion in a fluid at rest
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▶ Project equations of motion for spin tensor to obtain evolution
equations for the components of the spin potential

Equations of motion for the spin potential

(A−B − C)κ̇⟨µ⟩ = Eϵµναβuν∇αωβ + ℏΓ(κ)κµ , (3a)

(A− 2C)ω̇⟨µ⟩ = Dϵµναβuν∇ακβ − ℏΓ(ω)ωµ . (3b)

▶ Go to fluid rest frame, κµ ≡ (0,κ), ωµ ≡ (0,ω)

τκκ̇+ κ = µκ∇× ω , (4a)

τωω̇ + ω = −µω∇× κ , (4b)

▶ Quantities A, . . . , E, Γ(κ), Γ(ω) are constant due to the assumptions
on the fluid

τκ := −A−B−C

ℏΓ(κ) , µκ := − E

ℏΓ(κ) , τω := A−2C

ℏΓ(ω) , µω := − D

ℏΓ(ω) .
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Spin waves
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▶ κ and ω follow coupled relaxation equations
→ Disentangle longitudinal and transverse components

Longitudinal components: Decay

τκ
d

dt
(∇ · κ) = −∇ · κ , (5a)

τω
d

dt
(∇ · ω) = −∇ · ω , (5b)

Transverse components: Damped waves

κ̈+ aκ̇+ bκ− c2s∆κ = 0 , (6a)

ω̈ + aω̇ + bω − c2s∆ω = 0 , (6b)

▶ For τω, τκ → ∞ the damping vanishes
V. E. Ambrus, R. Ryblewski, R. Singh, Phys. Rev. D 106 (2022) 1, 014018
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dt
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κ̈+ aκ̇+ bκ− c2s∆κ = 0 , (6a)

ω̈ + aω̇ + bω − c2s∆ω = 0 , (6b)

▶ For τω, τκ → ∞ the damping vanishes
V. E. Ambrus, R. Ryblewski, R. Singh, Phys. Rev. D 106 (2022) 1, 014018

a := τκ+τω
τκτω

, b := 1
τκτω

, c2s := µκµω
τκτω

.
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Microscopic approach: concept
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QFT(
i/∂ −m

)
ψ̂ = ρ̂

QKT

k · ∂f = C[f ]

Hydro

∂µT
µν = 0

Length scale

ℓint ≪ λmfp

λmfp ≪ Lhydro
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Kinetic theory with spin: basics
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▶ Quantum kinetic theory: Effective description of the underlying QFT
in the limit where the fields behave as scattering quasiparticles

→ Quantum corrections can be treated perturbatively

▶ Distribution of particles characterized by distribution function
f(x, k, s)

Arguments: position x, momentum k, continuous “spin” variable s

Boltzmann equation

kµ∂µf(x, k, s) =
1

2

∫
dΓ1dΓ2dΓ

′δ(4)(k1 + k2 − k − k′)W̃

×
[
f(x+∆1 −∆, k1, s1)f(x+∆2 −∆, k2, s2)

−f(x, k, s)f(x+∆′ −∆, k′, s′)
]

(7)

dΓ := dKdS , dK := d3k
(2πℏ)3k0 , dS := m√

3π
d4sδ(kαsα)δ(s

2 + 3).
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Connection to hydrodynamics
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▶ We can express the conserved quantities in terms of integrals over the
distribution function

Conserved currents

1

2
T (µν) =

∫
dΓkµkνf , (8)

Sλµν =
1

2m

∫
dΓkλϵµναβkαsβf . (9)

T [µν] =
1

2

∫
[dΓ]W̃∆[µkν]

(
f1f2 − ff ′

)
(10)

▶ Given a distribution f(x, k, s), we can compute these expressions and
read off the needed coefficients

[dΓ] := dΓ1 dΓ2 dΓdΓ′
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Obtaining the coefficients
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▶ Ideal spin hydrodynamics ≡ local equilibrium in kinetic theory

Local-equilibrium distribution function

f(x, k, s) = e−βEk

(
1− ℏ

4m
ϵµναβΩµνkαsβ

)
. (11)

Spin-wave coefficients from kinetic theory

τκ :=
I31

2m2Γ(κ)
, µκ :=

I31

4m2Γ(κ)
,

τω :=
I30 − I31

4m2Γ(ω)
, µω :=

I31

4m2Γ(ω)
. (12)

▶ Γ(κ) and Γ(ω) are given through collision integrals that contain the
spacetime shift ∆µ

→ Nonlocal collisions cause relaxation of the spin potential towards
thermal vorticity!
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Spin relaxation timescales
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▶ We need to specify a microscopic interaction
→ Choose NJL-type model, Lint := G(ψ̄ψ)2

▶ Compare with the relaxation timescale of the shear-stress tensor τπ

0.01 0.1 1 10 100

1

10

100

1,000

m/T

τω/τπ
τκ/τπ
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Conclusion & Outlook
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▶ In ideal spin hydrodynamics, the components of the spin potential
fulfill damped wave equations

▶ Their relaxation timescales can be computed from quantum kinetic
theory

τκ is on the order of the timescales of usual dissipative processes
τω can be orders of magnitude larger! (depending on m/T )

▶ This implies that the timescale of spin equilibration can be much
longer than the one of usual dissipative processes

→ Implication for simulations: spin hydrodynamics should be used to
capture polarization dynamics correctly!
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Appendix: Quantum kinetic theory
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▶ Spin is a quantum property

→ Start from quantum field theory
→ Use Wigner-function formalism

Wigner function (Spin 1)

Wαβ(x, k) :=
1

(2πℏ)4

∫
d4ve−ik·y/ℏ 〈: ψ̄β(x+ y/2)ψα(x− y/2) :

〉
▶ Determines a quantum phase-space distribution function
▶ Equations of motion follow from field equations

Determined by Lagrangian L0 + Lint

▶ Independent components: scalar F , axial vector Aµ

F := TrW , Aµ := Trγµγ5W
David Wagner Timescales of spin transport 16.03.2024 18



Appendix: Extending phase space
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Boltzmann equations

▶ Not one, but four equations in (x, k)-phase space

k · ∂F(x, k) = CF , k · ∂Aµ(x, k) = Cµ
A

▶ Way to compactify this: Enlarge phase space from (x, k) to (x, k, s)

▶ Measure dS := 3m
2σπd

4sδ[s2 + σ2]δ(k · s)

Boltzmann equation in extended phase space

f(x, k, s) :=
1

2

(
F − sµFµ

)
(13)

▶ Only on-shell parts f(x, k, s) = δ(k2 −m2)f(x, k, s) contribute

k · ∂f(x, k, s) = C[f ] (14)

C := 1
2

(
CF − sµCµ

A
)
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Appendix: Equilibrium
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▶ Local equilibrium distribution function fulfills C[feq] = 0

▶ Has to depend on the collisional invariants
→ Charge, four-momentum and total angular momentum

Local-equilibrium distribution function

feq(x, k, s) = exp

(
−β0Ek +

ℏ
2
ΩµνΣ

µν
s

)
(15)

▶ Necessary conditions on Lagrange multipliers β0u
µ, Ωµν for a

vanishing collision term: ∂(µ(β0u
ν)) = 0 , Ωµν = −1

2∂
[µ(β0u

ν])

▶ Same conditions as for global equilibrium, where k · ∂feq = 0

▶ However, we can relax these constraints if we only demand that the
local part of the collision term vanishes!

Σµν
s := − 1

m
ϵµναβkαsβ , Ek := k · u
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