J/psi spin alignment from polarized damping rate

Shu Lin Sun Yat-Sen University

ExHIC-p workshop on polarization phenomena in nuclear collisions, Academia Sinica, Taipei, March 14-17, 2024

Z. Chen, Y. Guo, M. He, SL, to appear

Outline

- Uniqueness of spin physics in heavy ion collisions
- Difference between spin polarization and spin alignment
- Spin alignment of ϕ and J/Ψ
- Effective theory of charmonium
- Spin dependent damping rate
- Heavy ion phenomenology
- Conclusion and outlook

Spintronics in condensed matter physics

Spin in particle physics

Proton spin composition (1988-now)

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_g$$

Spin polarization (alignment) in HIC

Spin polarization observed in multiple final particles (Λ , ϕ , J/Ψ) as messengers, probe different apsects of the QCD medium

Explorations of spin polarization (alignment) in HIC just begin!

 $L_{ini} \sim 10^5 \hbar \to S_{final}$

Liang, Wang, PRL 2005, PLB 2005

Talks by A.-h. Tang, S. Lim Difference between spin polarization and alignment

Spin polarization: approx conserved, sum of parton polarization from medium, insensitive to interaction Vorticity field EM field Other hydro gradient field

Spin alignment: not conserved, origin complicated, sensitive to interaction

Vector meson field fluctuation Glasma field fluctuation Vorticity field EM field Fragmentation

Talks by Q. Wang, X.-L. Sheng, L. Oliva, K. Avdhesh, H. Kim

Spin alignment of J/Ψ vs ϕ

 $B \to J/\Psi + X$

Talks by A.-h. Tang, S. Lim

J/Ψ production mechanism at forward rapidity

K. Zhou et al, PLB 2014

At LHC energy, regeneration important at central collision, less so at peripheral collision, dissociation significant

J/Ψ spin alignment from polarized damping

Focus on dissociation of charmonium produced in hard scattering

$$J/\Psi$$
 S-wave spin triplet $S=1, L=0$
 $p^{\mu}\partial_{\mu}f_i=-C_if_i+R_i$ i: spin triplet label disso regen

Spin dependent (polarized) damping rate leads to spin alignment

$$ho_{00} < rac{1}{3}$$
 requires $C_0 > rac{1}{3}(C_0 + C_+ + C_-)$

Quantum mechanical desciption of charmonium

$$\begin{split} H_{\text{eff}} &= H_0 + H_I, \\ H_0 &= \frac{\vec{p}^2}{m_Q} + V_1(|\vec{r}|) + \sum_a \frac{\lambda^a}{2} \frac{\bar{\lambda}^a}{2} V_2(|\vec{r}|), \\ &\text{color singlet octet} \\ H_I &= Q^a A_0^a(t, \vec{0}) - \vec{d}^a \cdot \vec{E}^a(t, \vec{0}) - \vec{m}^a \cdot \vec{B}^a(t, \vec{0}) + \cdots \\ &\vec{d}^a &= \frac{1}{2} g_s \vec{r} \left(\frac{\lambda^a}{2} - \frac{\bar{\lambda}^a}{2}\right), \\ &\vec{m}^a &= \frac{g_s}{2m_Q} \left(\frac{\lambda^a}{2} - \frac{\bar{\lambda}^a}{2}\right) \left(\frac{\vec{\sigma}}{2} - \frac{\vec{\sigma}}{2}\right) \end{split}$$

Yan, PRD 1980, Kuang-Yan, PRD 1981

rest frame of $~J/\Psi$

Spin dependent interaction

chromo-electric dipole moment

chromo-magnetic dipole moment

Cross sections from chromo-electric interaction

$$\sigma_{E_1,\text{Coulomb}}^{g+J/\psi\to c+\bar{c}}(E_g) = \frac{2^7}{9} g_s^2 \frac{\epsilon_B^{5/2}}{m_Q} \frac{(E_g - \epsilon_B)^{3/2}}{E_g^5},$$

$$\propto |\langle (car{c})_8,ec{p}|ec{r}|J/\psi
angle|^2$$

$$c \bar{c}$$
 $S = 1, L = 1$

Peskin, NPB 1979, Bhanot-Peskin, NPB 1979 Chen-He, PRC 2017

Spin independent interaction

Cross sections from chromo-magnetic interaction

$$\sigma_{M_1,\text{Coulomb}}^{g+J/\psi\to c+\bar{c}}(E_g) = \frac{2^3}{3} g_s^2 \frac{\epsilon_B^{5/2}}{m_Q^2} \frac{(E_g - \epsilon_B)^{1/2}}{E_g^3}.$$
$$\propto |\langle (c\bar{c})_8| \left(\frac{\vec{\sigma}}{2} - \frac{\vec{\sigma}'}{2}\right) \cdot (\vec{k} \times \vec{\epsilon}_{k\lambda}) |J/\psi\rangle|^2$$

$$c \bar{c}$$
 $S = 0, L = 0$

Peskin, NPB 1979, Bhanot-Peskin, NPB 1979 Chen-He, PRC 2017

Spin dependent interaction

$$\left| \left\langle \frac{\uparrow \downarrow - \downarrow \uparrow}{\sqrt{2}} \left| \left(\frac{\overrightarrow{\sigma}}{2} - \frac{\overrightarrow{\sigma}'}{2} \right) \cdot \overrightarrow{B} \right| \uparrow \uparrow \right\rangle \right|^2 = \left| \left\langle \frac{\uparrow \downarrow - \downarrow \uparrow}{\sqrt{2}} \left| \left(\frac{\overrightarrow{\sigma}}{2} - \frac{\overrightarrow{\sigma}'}{2} \right) \cdot \overrightarrow{B} \right| \downarrow \downarrow \right\rangle \right|^2 = \frac{B_{\perp}^2}{2}$$
$$\left| \left\langle \frac{\uparrow \downarrow - \downarrow \uparrow}{\sqrt{2}} \left| \left(\frac{\overrightarrow{\sigma}}{2} - \frac{\overrightarrow{\sigma}'}{2} \right) \cdot \overrightarrow{B} \right| \frac{\uparrow \downarrow - \downarrow \uparrow}{\sqrt{2}} \right\rangle \right|^2 = B_{\parallel}^2 \quad \parallel, \perp \text{ defined w.r.t quantization axis n}$$

$$B_n^2 \sim \sum_{\lambda} |\left(\vec{k}' \times \vec{\epsilon}_{k'\lambda}\right) \cdot \hat{n}'|^2 = k'_i k'_j (\delta_{ij} - n'_i n'_j)$$

Assumptions and simplifications

- Evolution of J/Ψ only
- Initial condition : unpolarized J/Ψ produced by hard scattering
- Ignore regeneration, only dissociation
- Spin dependent damping rate in QGP leads to spin alignment

from particle effect

Vector meson field fluctuation Glasma field fluctuation Vorticity field EM field from mean field Fragmentation

Boltzmann equation in Bjorken flow

$$p^{\mu}\partial_{\mu}f_i = -C_i f_i \qquad \qquad C_i = C^E + C_i^B$$

In Bjorken flow $C^E = C^E(\tau, p), \quad C^B_i = C^B_i(\tau, p, n)$

Approx boost invariant solution $E
ightarrow\infty$

 J/Ψ produced at collision point

$$f(\tau, \eta, y, p_T) = \frac{\tau_0}{\tau} \bar{f}(\tau, y, p_T) \,\delta(\eta - y)$$

Zhu-Zhuang-Xu, PLB 2005

 $\bar{f}(\tau, y, p_T) = \exp\left(-\int_{\tau_0}^{\tau} \frac{\mathrm{d}\tau'}{\tau_R^i(\tau')}\right) \bar{f}_0(\tau_0, y, p_T) \qquad \frac{1}{\tau_R^i} = \frac{C^E}{p \cdot u} + \frac{C_i^B}{p \cdot u}$

dissociation changes

number, not momentum

Spin alignment

$$f^{i}(\tau, y, p_{T}) \simeq \exp\left(-\int_{\tau_{0}}^{\tau} \mathrm{d}\tau' \frac{C^{E}}{p \cdot u}\right) \exp\left(-\int_{\tau_{0}}^{\tau} \mathrm{d}\tau' \frac{C_{i}^{B}}{p \cdot u}\right) \bar{f}_{0}(\tau_{0}, y, p_{T})$$

$$\rho_{00} - \frac{1}{3} = \frac{f^{0}}{f^{0} + f^{-} + f^{+}} - \frac{1}{3} \simeq -\frac{1}{3} \int_{\tau_{0}}^{\tau} \frac{C_{0}^{B} \mathrm{d}\tau'}{p \cdot u} + \frac{1}{3} \int_{\tau_{0}}^{\tau} \frac{\mathrm{d}\tau' \bar{C}^{B}}{p \cdot u}$$

Only chromo-magnetic damping factor survives

$$C_0^B \propto k'_i k'_j \left(\delta_{ij} - n'_i n'_j\right)$$
$$C_0^B + C_+^B + C_-^B \propto 2k'^2$$

isotropic $k_i'k_j'
ightarrow rac{1}{3}k'^2\delta_{ij}$

alignment: anisotropic collision geometry

Spin dependent damping: limit 1

Spin dependent damping: limit 2

Frame & quantization axis

$$p^{\mu}\partial_{\mu}f_{i} = -C_{i}f_{i}$$

Lorentz invariant

$$\rho_{00} - \frac{1}{3} = \frac{f^0}{f^0 + f^- + f^+} - \frac{1}{3}$$

frame independent quantization axis dependent

$$\rho_{00} - \frac{1}{3} = \frac{1}{3}A \left[\frac{1}{3} + \frac{\left(-u \cdot n + \frac{p \cdot u}{m} \frac{p \cdot n}{m}\right)^2}{\left(\frac{p \cdot n}{m}\right)^2 + 1} - \frac{1}{3} \left(\frac{p \cdot u}{m}\right)^2 \right]$$

expressed in lab frame

Spin alignment

▶non-monotonic p_⊤ dependence
 ▶rapidity independent
 𝑘 Coulombic binding

$$f(\tau, \eta, y, p_T) = \frac{\tau_0}{\tau} \bar{f}(\tau, y, p_T) \,\delta(\eta - y)$$
$$\frac{g^2 T_0^{1/2} \epsilon_B^{5/2}}{m_Q^2}$$

Conclusion

- Possible mechanism of J/Ψ spin alignment from particle effect
- Interplay of spin-chromo-magnetic coupling and anisotropic flow leads to spin dependent damping
- Dissociation only gives $\rho_{00} > \frac{1}{3}$

Outlook

- + J/Ψ regeneration to give non-trivial momentum dependence
- + QGP effect on formation of J/Ψ
- Feed down from excited states

Thank you!