# Searching for $B^0 \to p \overline{\Sigma}^0 \pi^-$ and $B^+ \to p \overline{n} \pi^0$ at Belle

- Introduction
- $B^0 \to p \overline{\Sigma}^0 \pi^-$
- $B^+ \to p \overline{n} \pi^0$
- Prospects

Presenter : Min-Zu Wang

Department of Physics National Taiwan University

#### 2024/1/12@TQCD Workshop





# KEKB factory and data sample



# **Belle Detector**



# SuperKEKB nano-beam technology



4

# Belle II accumulated data

#### Luminosity

#### Status:

- ▷ Collected  $\sim$ **428** fb<sup>-1</sup> since April 2019
- ▷ Slower luminosity accumulation than initially planned, but with ~90% data-taking efficiency
- ▷ Record-breaking instantaneous luminosity:  $4.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

#### > Highest daily integrated luminosity: 2.2 fb<sup>-1</sup>





#### Plans:

- Short-term plan: shutdown in 2022
  - ▷ full PXD installation → important to maintain good vertex resolution at high luminosity
- ▶ Goal: 50 ab<sup>-1</sup>

## Physics topics at Belle (II)



Upsilon(4S) runs

#### Basic quark diagrams for charmless B decays



Looking for deviations from the SM predictions of a small BF or Acp

## Challenge : continuum background suppression



# **B** signal reconstruction



Determine Signal and background shapes and use likelihood fit method to extract signal yield

## Motivation for studying $B^0 \rightarrow p\overline{\Sigma}^0 \pi^-$

 Branching Fraction : We observed the deviation between theoretical prediction and experimental measurement

10

|                                      | Theoretical Value               | Measurement                    |
|--------------------------------------|---------------------------------|--------------------------------|
| $B^0 \to p \overline{\Lambda} \pi^-$ | $10^{-7} \sim 3 \times 10^{-6}$ | $3.14 \pm 0.29 \times 10^{-6}$ |
| $B^0 \to p\overline{\Sigma}\pi^-$    | $\sim 1.6 \times 10^{-6}$       | ?                              |

With big axial vector and pseudoscalar contribution for  $B^0 \rightarrow p\overline{\Lambda}\pi^-$ 

 Threshold Enhancement (TE): We observed TE in B<sup>0</sup> → pΛπ<sup>-</sup> channel Factorization approaches QCD counting rules Cheng & Yang Phys. Rev. D 66, 014020 (2002)
 Chua, Hou & Tsai Phys. Rev. D 66, 054004 (2002)
 Chua & Hou Eur.Phys.J.C 29, 27-35 (2003)

• cosθ<sub>p</sub> Asymmetry : <u>Phys. Rev. D 76</u>, 052004 (2007)

In  $B^0 \to p \overline{\Lambda} \pi^-$  study, we found  $cos \theta_p$  asymmetry which cannot be explained by the  $b \to sg$  picture

 ${}^{*}\!\theta_{p}$  is the angular between  $p^{\pm}$  and  $h^{\pm}$  in baryon pair rest frame





#### Inclusive $p\Lambda\pi^-$ event reconstruction



• Reconstruct our candidate with charged particle and measure  $B^0 \rightarrow p \overline{\Lambda} \pi^-$  simultaneously

## **Fitting variables**



 No significant discrepancy of distribution between TE and PHSP

## Background study: rare & generic decays

#### • Main rare decay background list:

| Decay channel                              | $\mathcal{B}(10^{-6})$ in decay table | $\mathcal{B}(10^{-6})$ in PDG   |
|--------------------------------------------|---------------------------------------|---------------------------------|
| $B^+ \to p\overline{\Lambda}$              | 0.37                                  | $0.24^{+0.10}_{-0.08} \pm 0.03$ |
| $B^+ \to p\overline{\Sigma}$               | 1.5                                   | -                               |
| $B^+ \to p \overline{\Lambda} \rho^0$      | 5.7                                   | $4.78^{+0.67}_{-0.64} \pm 0.60$ |
| $B^+ \to \Lambda \overline{\Lambda} \pi^+$ | 2.8                                   | <0.9                            |
| $B^0 \to \Lambda \overline{\Lambda}$       | 0.3                                   | <0.3                            |
| $B^0 \to \Lambda \overline{\Sigma}$        | 1.0                                   | -                               |
| $B^0 \to \Sigma \overline{\Sigma}$         | 1.0                                   | -                               |

- Narrow down  $\Delta E$  region can eliminate most rare decay
- Rest of rare decay are too rare and overrated by decay table
- Main generic decay background :  $B^0 \rightarrow p\Lambda_c^$ cut off 2.15</br/> $M_{\Lambda\pi}$  <2.30 GeV/ $c^2$



## **PDF** modeling



• Signal : $\mathcal{P}(M_{bc}) \times \mathcal{P}(\Delta E)$ 

 $\mathcal{P}(M_{bc})$ : 1D HistPDF  $\mathcal{P}(\Delta E)$ : 1D HistPDF

- $B^0 \rightarrow p \overline{\Lambda} \pi^- : \mathcal{P}(M_{bc}) \times \mathcal{P}(\Delta E)$  $\mathcal{P}(M_{bc}):$  Double Gaussian  $\mathcal{P}(\Delta E):$  Triple Gaussian (Self-cross feed : 2D Kernel)
- Background :  $\mathcal{P}(M_{bc}) \times \mathcal{P}(\Delta E)$ ( $q\overline{q}+B\overline{B}+Rare$  decay)
  - $\mathcal{P}(M_{bc})$ : ARGUS Function  $\mathcal{P}(\Delta E)$ : 2nd Polynomial

### Likelihood fit results

• Whole  $M_{p\overline{\Lambda}}$  region:



### Fit results in TE region



#### Differential branching fractions in $M_{p\overline{\Lambda}}$ & $cos\theta_p$



| Region                                                                                                                                                  | Signal yield              | Significance (Stats) | Significance (Stats+Sys) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|--------------------------|
| Threshold< $M_{p\overline{\Lambda}}$ <limit< td=""><td><math>50.29^{+18.06}_{-17.38}</math></td><td><math>3.00\sigma</math></td><td>2.98σ</td></limit<> | $50.29^{+18.06}_{-17.38}$ | $3.00\sigma$         | 2.98σ                    |
| $M_{p\overline{\Lambda}} < 2.8 GeV/c^2$                                                                                                                 | $36.70^{+11.82}_{-10.09}$ | 3.56σ                | 3.50 <i>o</i>            |

# Summary for $B^0 \rightarrow p \overline{\Sigma}^0 \pi^-$ Phys. Rev. D 108, 052011 (2023)

- The result of  $B^0 \to p \overline{\Lambda} \pi^-$  is consistent with previous study
- First measured 3.5  $\sigma B^0 \rightarrow p \overline{\Sigma} \pi^-$  signal with TE
- Agree with the theoretical expectation

 $cos\theta_p$  distribution of  $B^0 \to p\overline{\Sigma}\pi^-$  needs more data

|                          | $B^0 \to p \overline{\Lambda} \pi^-$ | $B^0 \to p \overline{\Sigma} \pi^-$ |
|--------------------------|--------------------------------------|-------------------------------------|
| Threshold Enhancement    |                                      |                                     |
| $cos \theta_p$ Asymmetry |                                      | Not enough statistics               |

|                                      | $B.F(10^{-6})$                  | Significance  |
|--------------------------------------|---------------------------------|---------------|
| $B^0 \to p \overline{\Sigma} \pi^-$  | $1.17^{+0.43}_{-0.40} \pm 0.07$ | 3.5σ          |
| $B^0 \to p \overline{\Lambda} \pi^-$ | $3.21^{+0.28}_{-0.25} \pm 0.16$ | $18.55\sigma$ |

## Motivation for studying $B^+ \rightarrow p \overline{n} \pi^0$

- $\mathcal{B}(B^0 \to p\bar{n}D^{*-}) = (1.4 \pm 0.4) * 10^{-3} \text{ (CLEO) vs } \mathcal{B}(B^0 \to p\bar{p}D^{*0})$ = (9.91.1) \* 10<sup>-5</sup> (BABAR), clear deviation from naïve isospin symmetry due to color suppression
- Significant yields for both  $\mathcal{B}(B^+ \to p\bar{p}\pi^+) = (1.62 \pm 0.2) * 10^{-6}$ and  $\mathcal{B}(B^0 \to p\bar{p}\pi^0) = (5.0 \pm 1.9) * 10^{-7}$
- Determine the contributions from the transition or current produced diagrams for baryon pair



### Mechanism for $\overline{n}$ detection and identification

- $\overline{n}$  has high chance to annihilate in Belle2 EM calorimeter, which has crystals with 16.1 X<sub>0</sub> in length. This process makes extra energy deposited at GeV level with distinct shower shape.
- One can use machine learning to develop an  $\overline{n}$  tagging tool to separate  $\overline{n}$  from  $\gamma$ .
- The cross section 6cm X 6 cm of each crystal also provides good resolution in solid angle. This helps us to determine the direction of n



## $\bar{n}$ selection and $B^+ \rightarrow p \bar{n} \pi^0$ reconstruction

- 1. Get  $E_p$ ,  $E_{\pi}$ ,  $\overrightarrow{P_p}$ ,  $\overrightarrow{P_{\pi}}$  from CDC and other detectors.
- 2. Set constraints:  $M_{\bar{n}}$ ,  $M_{\rm B}$  (from PDG) and

$$E_{\rm B} = E_p + E_\pi + E_{\bar{n}} , \ \overrightarrow{P_{\rm B}} = \overrightarrow{P_p} + \overrightarrow{P_\pi} + \overrightarrow{P_{\bar{n}}}.$$

- 3. Get  $\theta$ ,  $\phi$  from ECL cluster and set:  $\widetilde{P_{\overline{n}}} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta, \sqrt{1 + M_{\overline{n}}^2 / P_{\overline{n}}^2})$
- 4. By applying  $M_{\rm B} = \sqrt{E_{\rm B}^2 P_{\rm B}^2}$  constraint,

we can determine  $\overrightarrow{P_n}$  to reconstruct  $\overrightarrow{P_B}$  ,  $E_B$ ,

and obtain  $\Delta E = E_{\rm B} - E_{beam}$ 

## Performance of $\overline{n}$ tagger

#### **BDT output from MVA**

This model can well separate π
from other particles, especially
for γ.

#### **ROC** curve

 The ROC curve shows background rejection rate against a fixed signal efficiency. It also shows the model having good performance from the AUC(>98%).



#### Compare MVA training information for data and MC



## Correction table from $\overline{\Lambda} \to \overline{p}\pi^+$

#### **Calculation of Calibration Factor**



#### Apply MVA cut to obtain the eff. ratio in bins of $\overline{p}$ p and cost

#### Determine correction table for different cut values

#### Factor1 with cut = 0.50 p[GeV/c] 1.5 1.06±0.03 0.99±0.01 $1.02 \pm 0.01$ 1.01±0.01 1.00 + 0.01 $0.99 \pm 0.00$ $0.99 \pm 0.00$ $0.97 \pm 0.00$ $0.90 \pm 0.00$ $1.05 \pm 0.01$ $1.02 \pm 0.01$ 1.90 1.4 1.03±0.01 1.00±0.01 $1.03 \pm 0.01$ $1.03 \pm 0.01$ 0.99±0.01 1.00±0.01 0.99±0.00 0.98±0.01 0.95±0.01 0.94±0.03 1.05±0.01 $1.03 \pm 0.01$ 1.60 1.3 0.92+0.02 0.99±0.01 $0.99 \pm 0.01$ $1.02 \pm 0.01$ 1.01±0.01 $0.99 \pm 0.01$ $0.99 \pm 0.01$ $0.97 \pm 0.00$ $0.96 \pm 0.01$ $0.92 \pm 0.01$ 1.00+0.011.01+0.01 1.35 1.2 0.97±0.01 0.94±0.02 1.00±0.01 0.98±0.01 $1.00\pm0.01$ $0.99 \pm 0.01$ $0.99 \pm 0.01$ 0.96±0.01 0.96±0.01 0.94±0.00 0.93±0.01 0.90±0.01 1.15 1.1 0.90±0.01 $0.95 \pm 0.01$ $0.95 \pm 0.01$ 0.92±0.01 0.93±0.01 $0.93 \pm 0.01$ 0.92±0.00 0.91±0.01 $0.99 \pm 0.01$ $0.94 \pm 0.01$ 0.94 + 0.010.87±0.01 1.00 1 0.94±0.01 0.95±0.01 $0.98 \pm 0.01$ $0.95 \pm 0.01$ $0.95 \pm 0.01$ $0.95 \pm 0.01$ $0.94 \pm 0.00$ 0.93±0.00 $0.91\pm0.00$ $0.90 \pm 0.01$ $0.86 \pm 0.01$ $0.97 \pm 0.01$ 0.90 0.9 0.93±0.00 0.94±0.01 0.92±0.00 $0.93 \pm 0.00$ 0.91±0.00 0.88±0.01 $0.96 \pm 0.01$ $0.96 \pm 0.01$ $0.94 \pm 0.01$ $0.94 \pm 0.00$ $0.93 \pm 0.00$ 0.89±0.01 0.80 0.8 0.93±0.01 $0.92 \pm 0.00$ 0.91 + 0.00 $0.90 \pm 0.00$ $0.89 \pm 0.00$ $0.87 \pm 0.01$ $0.90 \pm 0.01$ $0.93 \pm 0.01$ $0.92 \pm 0.01$ $0.93 \pm 0.00$ $0.92 \pm 0.00$ $0.85 \pm 0.00$ 0.70 0.7 0.93±0.01 0.90±0.01 0.90±0.00 0.85±0.00 0.88±0.01 $0.83 \pm 0.01$ $0.87 \pm 0.01$ 0.91 + 0.010.91 + 0.010.90±0.00 0.87±0.00 0.78±0.01 0.60 0.6 0.79±0.01 0.79±0.02 0.81±0.01 0.88±0.01 0.90±0.01 0.87±0.01 0.86±0.01 0.87±0.01 0.87±0.01 0.82±0.01 1.16±0.02 0.93±0.03 0.00 0.5 -0.15 0.00 +0.15 +0.30BW -0.45-0.30+0.45+0.60+0.75FW cosθ

## Validation using MVA to select $\bar{p}$ for $B^{\pm} \rightarrow p\bar{p}h^{\pm}$



Red: Signal, Green: Background

By combining fitting results of  $B^+ \rightarrow p\bar{p}\pi^+(K^+)$  and their signal efficiencies in MC respectively, we got  $\mathcal{B}(B^{\pm} \rightarrow p\bar{p}\pi^{\pm}) = (1.61 \pm 0.18) * 10^{-6} \text{ and } \mathcal{B}(B^{\pm} \rightarrow p\bar{p}K^{\pm}) = (5.5 \pm 0.4) * 10^{-6}.$ By previous studies,  $\mathcal{B}(B^{\pm} \rightarrow p\bar{p}\pi^{\pm}) = (1.62 \pm 0.2) * 10^{-6} \text{ and } \mathcal{B}(B^{\pm} \rightarrow p\bar{p}K^{\pm}) = (5.9 \pm 0.6) * 10^{-6}.$ 25

# Systematic uncertainty for $\overline{n}$ tagging



https://doi.org/10.1051/epjconf/201818203013

- Dominant source is the different annihilation cross-sections between n
   and p
   , especially in the low momentum region
- Correction table related statistical uncertainty and smearing across neighboring bins
- Total is estimated to be 6% for  $B^+ \rightarrow p \overline{n} \pi^0$

# Fit results for $B^+ \rightarrow p \overline{n} \pi^0$





Signal yield =  $-28.7 \pm 49.0$  $\mathcal{B}(B^+ \rightarrow p \overline{n} \pi^0) < 6.3 \times 10^{-6}$ 

| Uncertainties              | $B^+ \rightarrow p \bar{n} \pi^0$ |
|----------------------------|-----------------------------------|
| N <sub>BB</sub>            | 1.4                               |
| Decay model                | 2.6                               |
| Tracking                   | 0.4                               |
| p identification           | 0.3                               |
| $\pi^0$ reconstruction     | 2.3                               |
| <i>n</i> selection         | 6.0                               |
| Continuum suppression      | 1.2                               |
| $\Delta E, C_{nbtr}$ shape | 9.1                               |
| Sum                        | 11.7                              |

## Summary for $B^+ \rightarrow p \overline{n} \pi^0$ Phys. Rev. D 108, 112007 (2023)

- The search result for  $B^+ \rightarrow p\overline{n}\pi^0$  is negative only upper limit is obtained
- Developing an n

   tagging tool is successful
   Efficiency correction table and systematic uncertainty
   can be applied in future data analysis
- More decay modes such as  $B^0 \to p\overline{n}\pi^-$ ,  $\overline{B^0} \to p\overline{n}K^$ etc. should be studied

# Prospects

- •BelleII will collect 1 ab<sup>-1</sup> data in two years and we will combine Belle and Belle II data for physics search
- •Some puzzles from baryonic B decays can still be tackled with Belle data
- •More results of anti-neutron in the final state from B decays will be reported in the near future