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What does it look like in this plane?



Chiral Perturbation Theory (ChPT) with chiral anomaly

Lagrangian with Nf = 2 ChPT, electromagnetic and chiral anomaly (WZW)
terms [J. Wess and B. Zumino, PLB 37 (1971); E. Witten, NPB 223 (1983)]:
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f 2π
4
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]
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with SU(2) chiral field Σ, covariant derivative ∇µ, gauge fields Aµ

(electromagnetic) and AB
µ (“baryonic”), and anomalous baryon current [J. Goldstone

and F. Wilczek, PRL 47 (1981)]
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Free energy density

▶ Parameterising Σ(π0, π±) → (α, φ) and dropping time dependence, our
thermodynamic potential (density) is

Ω (r) =
B2

2
+ | [∇− i (eA +∇α)]φ|2 +

(
∇|φ|2

)2
2 (f 2π − 2|φ|2)

+
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2
(∇α)2 −m2

πfπ
√

f 2π − 2|φ|2 cosα−µnB (r) ,

where B = ∇× A and

nB(r) = j0B =
e∇α · B
4π2

+
∇α · ∇ × j
4π2ef 2π

is the local baryon number density with electromagnetic current j

▶ Obtain the free energy density from

F =
1

V

∫
dV Ω (r)



Chiral Soliton Lattice (CSL)
▶ Thermodynamic potential in the absence of π± (φ = 0) [D. T. Son and

M. A. Stephanov, PRD 77 (2008)]:

Ω0(r) =
B2

2
+

f 2π
2

(∇α0)
2 −m2

πf
2
π (cosα0 − 1)− eµ

4π2
∇α0 · B

▶ Solution of the α0 equation of motion is [T. Brauner and N. Yamamoto, JHEP 4 (2017)]

α0(z , p) = 2 arccos
[
−sn(z , p2)

]
where sn(z , p2) is the Jacobi elliptic sine function with elliptic modulus p
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▶ Minimised free energy

F0 =
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▶ Preferred over vacuum above
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CSL π± instability
▶ Linearise EoMs in φ, find dispersion relation, and determine

eBc2 =
m2

π

p2

(
2− p2 + 2

√
p4 − p2 + 1

)
from the lowest energy excitation [T. Brauner and N. Yamamoto, JHEP 4 (2017)]

▶ p parameterises the instability curve Bc2

chiral limit (p → 0):

eBc2 =
16π4f 4π
µ2

single domain wall (p → 1):

eBc2 = 3m2
π

[D. T. Son and M. A. Stephanov, PRD 77 (2008)]



What phase is beyond Bc2?



Superconductivity refresher
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▶ Instability to charged pions
implies they condense →
superconductivity

▶ Dispersion relation in
chiral limit reminiscent of
type-II Flux tube
lattice/Normal transition

▶ (Above) H-κ phase diagram where
κ is the Ginzburg-Landau (GL)
parameter

▶ (Right) Flux tube profile: ϕ has
coherence length ξ, B has
penetration depth λ
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Flux tube lattice
▶ Near second order phase transition → expand ϕ and A in small parameter

ϵ ∼
√
Bc2 − B [A. A. Abrikosov, Sov. Phys. JETP 5 (1957)]

ϕ = ϕ0 + δϕ+ . . . , A = A0 + δA + . . . ,

⇒ ϕ0(x , y) =
∞∑

n=−∞
Cne

inqye−
eBc2
2 (x− nq

eBc2
)2
, B ≃ (constant−|ϕ0(x , y)|2)ẑ

▶ With unit cell lengths Lx , Ly , Lz , introduce

⟨f (r)⟩x,y ,z ≡
1

Lx

1

Ly

1

Lz

∫ Lx

0

dx

∫ Ly

0

dy

∫ Lz

0

dz f (r)

and parameter

β ≡ ⟨|ϕ0|4⟩x,y ,z
(⟨|ϕ0|2⟩x,y ,z)2

▶ Minimised free energy up to and including ϵ4 terms is

F ≃ ⟨B⟩2

2
− 1

2

(Bc2 − ⟨B⟩)2

(2κ2 − 1)β + 1



Expansion near Bc2

▶ Adopt Abrikosov’s expansion with ϵ ≡
√
|⟨B⟩ − Bc2|/Bc2,

φ = φ0 + δφ+ . . . , A = A0 + δA + . . . , α = α0 + δα+ . . .

▶ Lowest order equations solved by CSL solution α0(z , p), gauge-like
condition eA0 +∇α0 = eBc2x ŷ , and

φ0(x , y , z) = f0(z)ϕ0(x , y)

where f0(z) is the lowest eigenfunction of the m = 2 Lamé equation

▶ To solve remaining equations in Fourier space, employ Fourier series

|ϕ0(x , y)|2 =
∑
k⊥

e ik⊥·r ω̂(k⊥) , f0(z)
2 =

∑
kz

e ikzz ŝ(kz) ,

where k⊥ = (kx , ky , 0) and

ω̂(k⊥) = ⟨e−ik⊥·r |ϕ0(x , y)|2⟩x,y , ŝ(kz) = ⟨e−ikzz f0(z)
2⟩z



δB

▶ Use Coulomb gauge ∇ · δA and Fourier series ansatz

δA = cx ŷ +
∑
k

e−ik·rδÂ(k) ⇒ δB = c ẑ +
∑
k

e−ik·rδB̂(k)

where k = (kx , ky , kz) and c is a constant

▶ Solutions in Fourier space are

δB̂x(k) =
kxkz
k2

eŝ(kz)ω̂(k⊥) ,

δB̂y (k) =
kykz
k2

eŝ(kz)ω̂(k⊥) ,

δB̂z(k) = −k2
⊥
k2

eŝ(kz)ω̂(k⊥)

▶ Determine c from boundary condition ⟨B⟩ ≡ ⟨Bz⟩x,y

⇒ c = ⟨B⟩ − Bc2 + eω̂0 , where ω̂0 ≡ ω̂(0)



δα

▶ Extend CSL solution from p at Bc2, to p + δp at ⟨B⟩ → Topological
contribution + Fourier series ansatz:

δα = α1δp +
ω0

f 2π
δα1 , with δα1 =

∑
k

e−ik·rδα̂(k)

and

α1 =
∂α0

∂p
= −E(z̄ , p2)∂z̄α0 + ∂2

z̄α0

p(1− p2)
, δp = −pE (p2)

K (p2)

⟨B⟩ − Bc2

Bc2
+O(ϵ4)

where z̄ is dimensionless z , E is the Jacobi epsilon function, and K and E
are the complete elliptic integrals of the first and second kind respectively

▶ Inhomogeneous differential equation reduces to a coupled set of linear
equations that must be solved to obtain δα̂(k)



Free energy

▶ Do not solve δφ equation, use instead to show

⟨|φ0(x , y , z)|2⟩x,y ,z = eω̂0 = G(p) ⟨B⟩ − Bc2

(2κ2 − 1)β + 1 + 2(H1 −H2)
,

where H1,2 are infinite sums over k and κ is an effective GL parameter

▶ G(p) related to eBc2(µ) “turning point”

▶ Up to and including ϵ4 terms,

F ≃ F0 +∆f (⟨B⟩ − Bc2)
2
,

where

∆f = −G2

2

1

(2κ2 − 1)β + 1 + 2(H1 −H2)



∆f - Is it preferred over pure CSL?

▶ Minimum of ∆f at R =
√
3

for all p → hexagonal lattice

▶ ∆f < 0 for eBc2 ≳ 0.12GeV2,
µ ≲ 910MeV

▶ Preferred for all e⟨B⟩ > eBc2,
µ ≲ 10GeV in chiral limit
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We have constructed a phase which is preferred over the CSL for
e⟨B⟩ ≳ 0.12GeV2 and µ ≲ 910MeV!



Baryon number density - What does it look like?

▶ Transverse plane - hexagonal flux tube lattice reflected in nB

▶ At fixed distance from Bc2, varying p changes periodicity in x , y , and z

▶ (Chiral limit) p → 0: Baryon tubes (no z-dependence) [GWE and A. Schmitt, JHEP

09 (2022)], (Domain wall) p → 1: lattice confined to a single sheet



Summary

▶ CSL phase instability to π±

fluctuations implies they condense
to a superconducting phase

▶ Adapting Abrikosov’s original
calculation, we constructed a
superconducting flux tube lattice
which lowers the free energy of the
CSL phase for e⟨B⟩ ≳ 0.12GeV2,
µ ≲ 910MeV

▶ Baryon number density is non-zero
and inhomogeneous with
periodicity in (x , y , z) → 3D
Baryon crystal

Updated phase diagram



Outlook

▶ Domain wall skyrmion phase found
in this region of the µ-B plane -
competition between phases?
[M. Eto et al., arXiv:2304.02940,2311.01112 [hep-ph]]

▶ π± lattice preferred up to near
baryon onset - include baryons for
a more realistic calculation

▶ CSL and charged pion
superconductivity emerge in the
µI -B plane - can we extend our
results to this plane? [T. Brauner et al.,

JHEP 12 (2019); P. Adhikari et al., PRC 91 (2015);

M. S. Grønli and T. Brauner, Eur. Phys. J. C 82

(2022)]

Conjectured phase diagram



Back-up slides



Equations of motion

From the Lagrangian/free energy we obtain the equations of motion for φ, A
and α

0 =

[
D +

∇2|φ|2

f 2π − 2|φ|2
+

(
∇|φ|2

)2
(f 2π − 2|φ|2)2

+m2
π cosα

(
1− fπ√

f 2π − 2|φ|2

)]
φ ,

∇× B = −ie (φ∗∇φ− φ∇φ∗)− 2e (eA +∇α) |φ|2 ,

∇ ·
[(

1− 2|φ|2

f 2π

)
∇α

]
= m2

π

√
1− 2|φ|2

f 2π
sinα ,

respectively, where

D ≡ ∇2− i∇·(eA +∇α)−2i (eA +∇α) ·∇−(eA +∇α)2+(∇α)2−m2
π cosα .



CSL π± instability

▶ Linearise EoMs in φ and use product ansatz φ = e−iwtg(x , y)f (z) to find
the (z-dependent) dispersion relation [T. Brauner and N. Yamamoto, JHEP 4 (2017)]

w2 = (2l + 1) eB − m2
π

p2
[
4 + p2 − 6p2sn2(z̄ , p2)

]
− f −1∂2

z f ,

where g(x , y) is the solution to Schrödinger equation for the quantum
harmonic oscillator

▶ Above can be cast into a Lamé equation with lowest eigenvalue

ε0 = 2(1 + p2 −
√
p4 − p2 + 1)

and corresponding eigenfunction

f0(z) =
1

N(p)

(√
p4 − p2 + 1 + 1− 2p2

3p2
+ sin2

α0

2

)
,

where N(p) is a normalisation factor



β parameter and lattice configurations

▶ Minimise β → minimise F

▶ Depends on periodicity condition Cn = Cn+N

▶ Explore a continuum of geometries with N = 2 and C0 = ±iC1 [W. H. Kleiner et

al., PR 133 5A (1964)]

Figure: R = Lx/Ly . Left: Red dots correspond to contour plots on the right.
Right: |ϕ0(x , y)|2 in the x-y plane. Dark regions correspond to flux tubes.



Chiral Limit

▶ Adopt Abrikosov’s expansion with ϵ ∼
√
B − Bc2,

φ = φ0 + δφ+ . . . , A = A0 + δA + . . . , α = α0 + δα+ . . .

▶ With mπ = 0 for simplicity,

B0 = Bc2êz , α0(z) =
eµ

4π2f 2π
Bc2z , φ0(x , y) = ϕ0(x , y)

▶ Next to leading order correction to B and α become

δB(x , y) =
[
⟨B⟩ − Bc2 + e

(
⟨|φ0(x , y)|2⟩ − |φ0(x , y)|2

)]
êz ,

δα(z) =
eµ

4π2f 2π
(⟨B⟩ − Bc2) z



Free energy result in chiral limit

Do not solve δφ equation, use it instead to show

e⟨|φ0|2⟩ =
⟨B⟩ − Bc2

(2κ2 − 1)β + 1
, where β =

⟨|φ0|4⟩
⟨|φ0|2⟩2

,

and κ =
√
eBc2/

√
2efπ is an effective Ginzburg-Landau parameter.

Up to to fourth order, the free energy density in the chiral limit Fm0 is

Fm0 ≃ F0,m0 −
1

2

(⟨B⟩ − Bc2)
2

(2κ2 − 1)β + 1
,

where F0,m0 is the free energy in the “homogeneous CSL phase”.

We have constructed a phase which is preferred above Bc2 in the
chiral limit!



Charged pion condensate and baryon number density
Oscillation in baryon number density comes primarily from the vorticity
term ∇× j ≃ e∇2|φ0|2êz .

Figure: Charged pion vortex lattice (left) and local baryon number density
(right).



Single domain wall

▶ Instability now occurs at

B ≤ Bc2 =
3m2

π

e

Vacuum
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Vortex Lattice?
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▶ Single domain wall CSL

α0(z) = 4 arctan (emπz)



Free energy in single domain wall case

▶ First order solution becomes

φ0(x , y , z) =
ϕ0(x , y)

cosh2 (mπz)

▶ Derive semi-analytical results in Fourier space for δα and δB to
obtain

F ≃ FDW − 2

3mπ

(Bc2 − ⟨B⟩)2

D(β)
,

where FDW is the domain wall free energy and D(β) must be
evaluated numerically

▶ Find D < 0 for physical values of mπ, e, and fπ

Single domain wall CSL preferred over superconducting baryon crys-
tal below Bc2


