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QCD Phase Diagram extended along the B-axis
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\What does it look like in this plane?



Chiral Perturbation Theory (ChPT) with chiral anomaly

Lagrangian with N¢ =2 ChPT, electromagnetic and chiral anomaly (WZW)
terms [J. Wess and B. Zumino, PLB 37 (1971); E. Witten, NPB 223 (1983)]:
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with SU(2) chiral field X, covariant derivative V#, gauge fields A,

(electromagnetic) and AZ (“baryonic”), and anomalous baryon current (1 coldione
and F. Wilczek, PRL 47 (1981)]
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Free energy density

» Parameterising X(7°, 7%) — (o, ¢) and dropping time dependence, our

thermodynamic potential (density) is
32 Vlel?)®
f2-2
+ % (Va)? — m2f\/F2 — 2|2 cos o — jung (r)
where B =V x A and

eVa-B Va-V xj
472 4m2ef?

np(r) =jg =

is the local baryon number density with electromagnetic current j

» Obtain the free energy density from

= %/ dv Q(r)



Chiral Soliton Lattice (CSL)

» Thermodynamic potential in the absence of 7% (¢ = 0)

B2 f2
Qo(r) = -+ ?ﬂ (Vag)? — m2£2 (cosag — 1) — %Vao -B

» Solution of the g equation of motion is
ao(z, p) = 2arccos [—sn(z, p?)]

where sn(z, p?) is the Jacobi elliptic sine function with elliptic modulus p

» Minimised free energy

» Preferred over vacuum above
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CSL 7 instability
> Linearise EoMs in ¢, find dispersion relation, and determine
m?2 5
Bo= "7 (2—p +2\/p4—p2+1>
from the lowest energy excitation

P> p parameterises the instability curve B
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What phase is beyond B.,?



Superconductivity refresher

Type | Type I

| » Instability to charged pions
implies they condense —
superconductivity

» Dispersion relation in
chiral limit reminiscent of
type-1l Flux tube
lattice/Normal transition

» (Above) H-x phase diagram where
k is the Ginzburg-Landau (GL)
parameter

> (Right) Flux tube profile: ¢ has
coherence length &, B has
penetration depth A




Flux tube lattice
» Near second order phase transition — expand ¢ and A in small parameter

€~ Bcng
p=c¢o+0p+..., A=Aj+0A+.. .,

= ¢o(x,y) Z C,e e = X_eBcz)2, B ~ (constant—|¢o(x, y)|?)2

n—=—oo

» With unit cell lengths Ly, L,, L,, introduce
1 1 1 LX Ly LZ
(F(MN)xyz = ———/ dx/ dy/ dz f(r)
g LeLy L Jo 0 0

and parameter
B = <|¢0‘4> XY,z
({02 x,y,2)°
» Minimised free energy up to and including €* terms is

(B2 1 (Ba—(B))’
2 2022 —1)B+1
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Expansion near B,

» Adopt Abrikosov's expansion with € = \/|(B) — Bc|/Bc2,

p=¢o+op+..., A=Ap+5A+..., a=ap+da+...

» Lowest order equations solved by CSL solution ag(z, p), gauge-like
condition eAg + Vag = eBooxy, and

QDO(Xayaz) = fO(Z)d)O(Xay)

where fy(z) is the lowest eigenfunction of the m = 2 Lamé equation

» To solve remaining equations in Fourier space, employ Fourier series

[Po(x, y)I> =) e ralk), foz)* =) e**3(k;),
ki kz

where k| = (k, k,,0) and

DkL) = (e " loo(x, ¥)P)xy » 8(ke) = (77 fo(2)%)2
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» Use Coulomb gauge V - §A and Fourier series ansatz

SA=cxy+> e *5Ak) = B=cz+) e *"5B(k)
k k

where k = (ky, ky, k;) and c is a constant

» Solutions in Fourier space are

6B, (k) = 12 e8(ke)(ky ),
A k kz N N

6By (k) = f@ (kz)o(kL),
o k2

§B,(k) = —k—geg(kz)@(/&)

» Determine ¢ from boundary condition (B) = (B,)x,

= c=(B) — B+ ey, where &= ®(0)
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» Extend CSL solution from p at B, to p + dp at (B) — Topological

contribution + Fourier series ansatz:

s

da = ay0p + %60[1 ,  with dag = Z e krsa(k)
k

and

Oag 5(27 p2)82040 + a;ao 5p— _pE(pz) <B> — Bo

_ 4
aq ) K(p2) BCZ + (9(6 )

" op p(1 - p?)

where Z is dimensionless z, £ is the Jacobi epsilon function, and K and E
are the complete elliptic integrals of the first and second kind respectively

Inhomogeneous differential equation reduces to a coupled set of linear
equations that must be solved to obtain dé&(k)



Free energy

» Do not solve §¢ equation, use instead to show

<B> — B
(2,‘62 — l)ﬁ + 1 + 2(7‘[1 — 7‘[2) ’

(lpo(x, ¥, 2)[)xy.z = €0 = G(p)

where H; 5 are infinite sums over k and « is an effective GL parameter
» G(p) related to eB.(p) “turning point”
» Up to and including €* terms,
F ~ Fo+ Af ((B) — Bw)
where
G2 1

Af = -
2 (2k2 —1)B+1+2(H1— Ha)




Af - Is it preferred over pure CSL?

0.004

» Minimum of Af at R =+/3 0002

for all p — hexagonal lattice 0000
«. -0.002

J

my=70 MeV
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> Af <0 for eBsp 2 0.12GeV?, = oo
1S 910 MeV Chiral limit
-0.006 my=140 MeV
> Preferred for all e(B) > eBca, 0008
1 < 10GeV in chiral limit 0010 ‘ ‘ ‘ ‘
0.05 0.10 0.15 0.20
eBgo[GeV?]

We have constructed a phase which is preferred over the CSL for
e(B) 2 0.12GeV? and u < 910MeV!




Baryon number density - What does it look like?

p=0.7
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» Transverse plane - hexagonal flux tube lattice reflected in ng
> At fixed distance from By, varying p changes periodicity in x, y, and z

» (Chiral limit) p — 0: Baryon tubes (no z-dependence) [cwe and A Schmice, JHEP
09 (2022)1, (Domain wall) p — 1: lattice confined to a single sheet



Summary

» CSL phase instability to 7+
fluctuations implies they condense
to a superconducting phase

» Adapting Abrikosov's original
calculation, we constructed a
superconducting flux tube lattice
which lowers the free energy of the
CSL phase for e(B) = 0.12 GeV?,
1< 910 MeV

» Baryon number density is non-zero
and inhomogeneous with
periodicity in (x,y,z) — 3D
Baryon crystal

a(B)[Gev?]

Updated phase diagram
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Outlook

» Domain wall skyrmion phase found
in this region of the u-B plane -
competition between phases? Conjectured phase diagram

[M. Eto et al., arXiv:2304.02940,2311.01112 [hep-ph]]

» 7* lattice preferred up to near 050
baryon onset - include baryons for
a more realistic calculation

025+ 1
Baryon crystal -

0.20
» CSL and charged pion ; .
superconductivity emerge in the ¢ Vacuum
1-B plane - can we extend our o Nuclear
results to this plane? [T erauner et al, 00 matter
JHEP 12 (2019); P. Adhikari et al., PRC 91 (2015); : T T
M. S. Grgnli and T. Brauner, Eur. Phys. J. C 82 HiMev]

(2022)]



Back-up slides



Equations of motion

From the Lagrangian/free energy we obtain the equations of motion for ¢, A
and «

V2|2 (V]eP)?
2

f
+ +micosa |l - ———— ]cp,
f2=2lel " (£2-2/p|?)? ( ViZ— 2<P|2>

V x B = —ie(¢p*Vp — pVp*) —2e(eA+ Va) [pf?,

2|e|? 2]pl?
V-[(l— |;,;| >Vo¢]—mfr 1- |;,'02| sina,

0= p+

respectively, where

D=V2—iV-(eA+Va)—2i(eA+ Va)-V—(eA+ Va)’ +(Va)’—m? cosa.



CSL 7 instability

» Linearise EoMs in ¢ and use product ansatz ¢ = e~™tg(x, y)f(z) to find
the (z-dependent) dispersion relation

2
w? = (2/+1)eB — % [4 + p> — 6p”sn®(z, p°)| — F1O2F,

where g(x, y) is the solution to Schrédinger equation for the quantum
harmonic oscillator

» Above can be cast into a Lamé equation with lowest eigenvalue

co=2(1+p>—/p*—p>+1)

and corresponding eigenfunction

1 (Vpt—p2+1+1-2p
p*—p +1+ P72 % 7
3p? 2

where N(p) is a normalisation factor



[ parameter and lattice configurations
» Minimise  — minimise F
» Depends on periodicity condition C, = C,1pn

» Explore a continuum of geometries with N =2 and Gy = +iCy (W H. Kieiner et
al., PR 133 5A (1964)]
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Figure: R =L,/L,. Left: Red dots correspond to contour plots on the right.
Right: |po(x,y)|? in the x-y plane. Dark regions correspond to flux tubes.



Chiral Limit

» Adopt Abrikosov's expansion with € ~ /B — B,
p=wo+d0p+..., A=Ay+6A+..., a=ap+da+...
» With m, = 0 for simplicity,
Bo = Beé = B =
0= B2é;, ao(z) = 55Bcz, ¢o(x.y) = do(x,y)
> Next to leading order correction to B and a become

0B(x,y) = [(B) — Bz + e ({lvo(x, ¥)I?) — lpo(x,y) )] &,

ba(2) = 54 ((B) = Bea) 2



Free energy result in chiral limit

Do not solve d¢p equation, use it instead to show

_ (B)- B _ {lpol*)
e{|ol?) = [ S R A PRI

and Kk = \/eBcz/\/ief7T is an effective Ginzburg-Landau parameter.

Up to to fourth order, the free energy density in the chiral limit F,o is

1 ((B) — Be2)’

Fmo >~ F ——
Mo MmO T S 2k — 1) B+ 17

where Fg mo is the free energy in the "homogeneous CSL phase”.

We have constructed a phase which is preferred above B, in the
chiral limit!




Charged pion condensate and baryon number density
Oscillation in baryon number density comes primarily from the vorticity
term V x j ~ eV?|yol|?é,.

=800MeV, e(B)=0176Ge\> 1=800MeV, e(B)=0.1 76GeV?
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Figure: Charged pion vortex lattice (left) and local baryon number density
(right).



Single domain wall

» Instability now occurs at

2
3m;

e

B < B =

Vacuum eqs.(
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» Single domain wall CSL

ap(z) = 4arctan (%)



Free energy in single domain wall case

» First order solution becomes

¢0(Xay)

X, Y,Z) = ——»,
Po(x.y.2) cosh? (m; z)

» Derive semi-analytical results in Fourier space for da and 6B to

obtain
2 (B2—(B))?

3m, D(B) ’
where Fpw is the domain wall free energy and D(3) must be
evaluated numerically

» Find D < 0 for physical values of m,, e, and f;

F ~ Fpw —

Single domain wall CSL preferred over superconducting baryon crys-
tal below B




